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Insert the information into a Binary Search Tree, 

using the name as the key
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Hash Function
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• Maps keys to positions in the Hash Table.

• Be easy to calculate.

• Use all of the key.

• Spread the keys uniformly.

• Each item has a unique key.

• Use a large array called a Hash Table.

• Use a Hash Function.
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unsigned hash(char* s)

{

int i = 0;

unsigned value = 0;

while (s[i] != „\0‟)

{

value = (s[i] + 31*value) % 101;
i++;

}

return value;

}

Example: Hash Function #1
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• A. Aho, J. Hopcroft, J. Ullman, “Data Structures and 

Algorithms”, 1983, Addison-Wesley.

„A‟ = 65 „h‟ = 104 „o‟ = 111

value = (65 + 31 * 0) % 101 = 65

value = (104 + 31 * 65) % 101 = 99

value = (111 + 31 * 99) % 101 = 49

Example: Hash Function #1

value = (s[i] + 31*value) % 101;
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Key Codes
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resulting
table is 
“sparse”

Example: Hash Function #1

value = (s[i] + 31*value) % 101;

Hash 
Key Value

Aho       49

Kruse 95

Standish 60

Horowitz 28

Langsam 21

Sedgewick 24

Knuth 44
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value = (s[i] + 1024*value) % 128;

Example: Hash Function #2

likely to
result in
“clustering”

Hash 
Key Value

Aho       111

Kruse 101

Standish 104

Horowitz 122

Langsam 109

Sedgewick 107

Knuth 104
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Example: Hash Function #3

“collisions”

value = (s[i] + 3*value) % 7;

Hash 
Key Value

Aho       0

Kruse 5

Standish 1

Horowitz 5

Langsam 5

Sedgewick 2

Knuth 1

Department of Computer Science           

UHD 



13

Aho
Hash 

Function

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

0

Example: Insert

Aho

Department of Computer Science           

UHD 



14

Kruse

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

5

Example: Insert

Aho

Kruse

Hash 
Function

Department of Computer Science           

UHD 



15

Standish
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Kruse

Sedgwick
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Insert with Linear Probing

• Apply hash function to get a position.

• Try to insert key at this position.

• Deal with collision.

– Must also deal with a full table!

• Two methods are commonly used:

– Linear Probing.

– Chaining.
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What is Linear probing

Linear probing is a scheme in computer

programming for resolving collisions in hash

tables, data structures for maintaining a collection

of key–value pairs and looking up the value associated

with a given key.
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Hashing with Linear Probe

When using a linear probe, the item will be stored in the

next available slot in the table, assuming that the table is

not already full.

This is implemented via a linear search for an empty slot,

from the point of collision. If the physical end of table is

reached during the linear search, the search will wrap

around to the beginning of the table and continue from

there.

If an empty slot is not found before reaching the point of

collision, the table is full.
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Hashing with Linear Probe
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Aho Hash 
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Kruse
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Standish
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Horowitz
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Langsam
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module linearProbe(item)

{

position = hash(key of item)

count = 0

loop {

if (count == hashTableSize) then {

output “Table is full”

exit loop

}

if (hashTable[position] is empty) then {

hashTable[position] = item

exit loop

}

position = (position + 1) % hashTableSize

count++

}

}
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Kruse

Langsam
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Kruse

Knuth
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Example: Search with Linear Probing

Aho

Standish

Horowitz

Hash 
Function

Langsam

not found.

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth
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module search(target)

{

count = 0

position = hash(key of target)

loop {

if (count == hashTableSize) then {

output “Target is not in Hash Table”

return  -1.

}

else if (hashTable[position] is empty) then {

output “Item is not in Hash Table”

return  -1.

}

else if (hashTable[position].key == target) then {

return position.

}

position = (position + 1) % hashTableSize

count++

}

}
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Delete with Linear Probing

• Use the search function to find the item

• If found check that items after that also 
don‟t hash to the item‟s position

• If items after do hash to that position, move 
them back in the hash table and delete the 
item.

Very difficult and time/resource consuming!
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Linear Probing: Problems

• Speed.

• Tendency for clustering to occur as the table 

becomes half full.

• Deletion of records is very difficult.

• If implemented in arrays – table may 

become full fairly quickly, resizing is time 

and resource consuming
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Chaining

• Uses a Linked List at each position in the 
Hash Table.

– Linked list at a position contains all the items 
that „hash‟ to that position.

– May keep linked lists sorted or not.
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hash table
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Example: Chaining
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Hashtable with Chaining

• At each position in the array you have a list:

List hashTable[MAXTABLE];

• You must initialise each list in the table.
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1

2

1

:
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module InsertChaining(item)

{

posHash = hash(key of item)

insert (hashTable[posHash], item);

}

0

1
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1

2 Knuth

1

Standish

Aho

Sedgewick

:

Insert with Chaining
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Search with Chaining

• Apply hash function to get a position in the 

array.

• Search the Linked List at this position in the 

array.
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/* module returns NULL if not found, or the address of the 

*  node if found */

module SearchChaining(item)

{

posHash = hash(key of item)

Node* found;

found = searchList (hashTable[posHash], item);

return found;

}
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Aho
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Delete with Chaining

• Apply hash function to get a position in the 

array.

• Delete the node in the Linked List at this 

position in the array.
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/* module uses the Linked list delete function to delete an item   

*inside that list, it does nothing if that item isn’t there.  */

module DeleteChaining(item)

{

posHash = hash(key of item)

deleteList (hashTable[posHash], item);

}

0
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2 Knuth

1

Standish

Aho

Sedgewick

:
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Disadvantages of Chaining

• Uses more space.

• More complex to implement.

– Contains a linked list at every element in the array.

– Requires linear searching. 

– May be time consuming.
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Advantages of Chaining

• Insertions and Deletions are easy and quick.

• Allows more records to be stored.

• Naturally resizable, allows a varying 

number of records to be stored.
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Thank You

???
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