

2

Overview

Department of Computer Science

UHD

 Information Retrieval

 Review: Binary Search Trees

 Hashing.

 Applications.

 Example.

 Hash Functions.

 Collisions

 Linear Probing

 Problems with Linear Probing

 Chaining

3

Kruse

Horowitz Sedgewick

Aho Knuth Langsam Standish

Insert the information into a Binary Search Tree,

using the name as the key

Kruse Horowitz Sedgewick Aho Knuth Langsam Standish

Department of Computer Science

UHD

Hashing

4

Hashing

key hash
function

0

1

2

3

TABLESIZE - 1

:

:

hash table

pos

Department of Computer Science

UHD

5

“Kruse”

0

1

2

3

6

4

5

hash table

Example:

5

Kruse

hash
function

Department of Computer Science

UHD

6

Hash Function

Department of Computer Science

UHD

• Maps keys to positions in the Hash Table.

• Be easy to calculate.

• Use all of the key.

• Spread the keys uniformly.

• Each item has a unique key.

• Use a large array called a Hash Table.

• Use a Hash Function.

7

unsigned hash(char* s)

{

int i = 0;

unsigned value = 0;

while (s[i] != „\0‟)

{

value = (s[i] + 31*value) % 101;
i++;

}

return value;

}

Example: Hash Function #1

Department of Computer Science

UHD

8

• A. Aho, J. Hopcroft, J. Ullman, “Data Structures and

Algorithms”, 1983, Addison-Wesley.

„A‟ = 65 „h‟ = 104 „o‟ = 111

value = (65 + 31 * 0) % 101 = 65

value = (104 + 31 * 65) % 101 = 99

value = (111 + 31 * 99) % 101 = 49

Example: Hash Function #1

value = (s[i] + 31*value) % 101;

Department of Computer Science

UHD

Department of Computer Science

UHD

9

Key Codes

10

resulting
table is
“sparse”

Example: Hash Function #1

value = (s[i] + 31*value) % 101;

Hash
Key Value

Aho 49

Kruse 95

Standish 60

Horowitz 28

Langsam 21

Sedgewick 24

Knuth 44

Department of Computer Science

UHD

11

value = (s[i] + 1024*value) % 128;

Example: Hash Function #2

likely to
result in
“clustering”

Hash
Key Value

Aho 111

Kruse 101

Standish 104

Horowitz 122

Langsam 109

Sedgewick 107

Knuth 104

Department of Computer Science

UHD

12

Example: Hash Function #3

“collisions”

value = (s[i] + 3*value) % 7;

Hash
Key Value

Aho 0

Kruse 5

Standish 1

Horowitz 5

Langsam 5

Sedgewick 2

Knuth 1

Department of Computer Science

UHD

13

Aho
Hash

Function

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

0

Example: Insert

Aho

Department of Computer Science

UHD

14

Kruse

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

5

Example: Insert

Aho

Kruse

Hash
Function

Department of Computer Science

UHD

15

Standish

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

1

Example: Insert

Aho

Kruse

Standish

Hash
Function

Department of Computer Science

UHD

16

Kruse

Kruse

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

5

Example: Search

Aho

Standish

Hash
Function

found.

Department of Computer Science

UHD

17

Kruse

Sedgwick

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

2

Example: Search

Aho

Standish

Hash
Function

Not found.

Department of Computer Science

UHD

18

Insert with Linear Probing

• Apply hash function to get a position.

• Try to insert key at this position.

• Deal with collision.

– Must also deal with a full table!

• Two methods are commonly used:

– Linear Probing.

– Chaining.

19

What is Linear probing

Linear probing is a scheme in computer

programming for resolving collisions in hash

tables, data structures for maintaining a collection

of key–value pairs and looking up the value associated

with a given key.

20

Hashing with Linear Probe

When using a linear probe, the item will be stored in the

next available slot in the table, assuming that the table is

not already full.

This is implemented via a linear search for an empty slot,

from the point of collision. If the physical end of table is

reached during the linear search, the search will wrap

around to the beginning of the table and continue from

there.

If an empty slot is not found before reaching the point of

collision, the table is full.

21

Hashing with Linear Probe

22

Aho Hash
Function

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

0

Example: Insert with Linear Probing

Aho

23

Kruse

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

5

Example: Insert with Linear Probing

Aho

Kruse

Hash
Function

24

Standish

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

1

Example: Insert with Linear Probing

Aho

Kruse

Standish

Hash
Function

25

Horowitz

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

5

Example: Insert with Linear Probing

Aho

Kruse

Standish

Horowitz

Hash
Function

26

Langsam

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

5

Example: Insert with Linear Probing

Aho

Kruse

Standish

Horowitz

Hash
Function

Langsam

27

module linearProbe(item)

{

position = hash(key of item)

count = 0

loop {

if (count == hashTableSize) then {

output “Table is full”

exit loop

}

if (hashTable[position] is empty) then {

hashTable[position] = item

exit loop

}

position = (position + 1) % hashTableSize

count++

}

}

28

Kruse

Langsam

0

1

2

3

6

4

5

hash table

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

5

Example: Search with Linear Probing

Aho

Standish

Horowitz

Hash
Function

Langsam

found.

29

Kruse

Knuth

0

1

2

3

6

4

5

hash table

1

Example: Search with Linear Probing

Aho

Standish

Horowitz

Hash
Function

Langsam

not found.

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

30

module search(target)

{

count = 0

position = hash(key of target)

loop {

if (count == hashTableSize) then {

output “Target is not in Hash Table”

return -1.

}

else if (hashTable[position] is empty) then {

output “Item is not in Hash Table”

return -1.

}

else if (hashTable[position].key == target) then {

return position.

}

position = (position + 1) % hashTableSize

count++

}

}

31

Delete with Linear Probing

• Use the search function to find the item

• If found check that items after that also
don‟t hash to the item‟s position

• If items after do hash to that position, move
them back in the hash table and delete the
item.

Very difficult and time/resource consuming!

32

Linear Probing: Problems

• Speed.

• Tendency for clustering to occur as the table

becomes half full.

• Deletion of records is very difficult.

• If implemented in arrays – table may

become full fairly quickly, resizing is time

and resource consuming

33

Chaining

• Uses a Linked List at each position in the
Hash Table.

– Linked list at a position contains all the items
that „hash‟ to that position.

– May keep linked lists sorted or not.

34

hash table

0

1

2

3

:

:

35

0

1

2

3

6

4

5

Aho, Kruse, Standish, Horowiz, Langsam, Sedgwick, Knuth

Example: Chaining

0, 5, 1, 5, 5, 2, 1

3

1

2

Kruse Horowitz

Knuth

1

Standish

Aho

Sedgewick

Langsam

0

0

0

36

Hashtable with Chaining

• At each position in the array you have a list:

List hashTable[MAXTABLE];

• You must initialise each list in the table.

0

1

2

1

2

1

:

37

module InsertChaining(item)

{

posHash = hash(key of item)

insert (hashTable[posHash], item);

}

0

1

2

1

2 Knuth

1

Standish

Aho

Sedgewick

:

Insert with Chaining

38

Search with Chaining

• Apply hash function to get a position in the

array.

• Search the Linked List at this position in the

array.

39

/* module returns NULL if not found, or the address of the

* node if found */

module SearchChaining(item)

{

posHash = hash(key of item)

Node* found;

found = searchList (hashTable[posHash], item);

return found;

}

0

1

2

1

2 Knuth

1

Standish

Aho

Sedgewick

:

40

Delete with Chaining

• Apply hash function to get a position in the

array.

• Delete the node in the Linked List at this

position in the array.

41

/* module uses the Linked list delete function to delete an item

*inside that list, it does nothing if that item isn’t there. */

module DeleteChaining(item)

{

posHash = hash(key of item)

deleteList (hashTable[posHash], item);

}

0

1

2

1

2 Knuth

1

Standish

Aho

Sedgewick

:

42

Disadvantages of Chaining

• Uses more space.

• More complex to implement.

– Contains a linked list at every element in the array.

– Requires linear searching.

– May be time consuming.

43

Advantages of Chaining

• Insertions and Deletions are easy and quick.

• Allows more records to be stored.

• Naturally resizable, allows a varying

number of records to be stored.

44

Thank You

???

Department of Computer Science

UHD

