
Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development,

College of Science and Technology

Computer Science Department

2015 – 2016

2

 Recursive in structure

 Divide the problem into sub-problems that

are similar to the original but smaller in size.

 Conquer the sub-problems by solving them

recursively. If they are small enough, just

solve them in a straightforward manner.

 Combine the solutions to create a solution to

the original problem

Divide and Conquer

Department of Computer Science _ UHD

3

“Divide and Conquer”

 Very important strategy in computer science:

 Divide problem into smaller parts

 Independently solve the parts

 Combine these solutions to get overall solution

 Idea 1: Divide array into two halves, recursively sort
left and right halves, then merge two halves
Mergesort

 Idea 2 : Partition array into items that are “small” and
items that are “large”, then recursively sort the two
sets Quicksort

Department of Computer Science _ UHD

4

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

Divide-and-conquer Technique

a problem of size n

Department of Computer Science _ UHD

5

Sort

Divide and Conquer

Sort Sort

Sort Sort Sort Sort

Department of Computer Science _ UHD

6

Divide and Conquer

Combine

Combine Combine

7

module sort(array)

{

if (size of array > 1)

{

split(array, firstPart, secondPart)

sort(firstPart)

sort(secondPart)

combine(firstPart, secondPart)

}

}

Divide and Conquer

Department of Computer Science _ UHD

Divide and Conquer

8

module sort(array)

{

if (size of array > 1)

{

split(array, firstPart, secondPart)

sort(firstPart)

sort(secondPart)

combine(firstPart, secondPart)

}

}

Divide and Conquer

9

module sort(array)

{

if (size of array > 1)

{

split(array, firstPart, secondPart)

sort(firstPart)

sort(secondPart)

combine(firstPart, secondPart)

}

}

Divide and Conquer

10

module sort(array)

{

if (size of array > 1)

{

split(array, firstPart, secondPart)

sort(firstPart)

sort(secondPart)

combine(firstPart, secondPart)

}

}

11

module sort(array)

{

if (size of array > 1)

{

split(array, firstPart, secondPart)

sort(firstPart)

sort(secondPart)

combine(firstPart, secondPart)

}

}

Divide and Conquer

Department of Computer Science _ UHD

12

Merge algorithm

Assume, that both arrays are sorted in ascending order and we want resulting

array to maintain the same order. Algorithm to merge two arrays A[0..m-

1] and B[0..n-1] into an array C[0..m+n-1] is as following:

1) Introduce read-indices i, j to traverse arrays A and B, accordingly.

Introduce write-index k to store position of the first free cell in the

resulting array. By default i = j = k = 0.

2) At each step: if both indices are in range (i < m and j < n), choose

minimum of (A[i], B[j]) and write it to C[k]. Otherwise go to step 4.

3) Increase k and index of the array, algorithm located minimal value at, by

one. Repeat step 2.

4) Copy the rest values from the array, which index is still in range, to the

resulting array.

Algorithm to merge sorted arrays

13

3 5 15 28 30 6 10 14 22 43 50a: b:

aSize: 5 bSize: 6

Example:

tmp:

Mergearrays

14

5 15 28 30 10 14 22 43 50a: b:

Example:

tmp:

i=0

k=0

j=0

3 6

Mergearrays

Department of Computer Science _ UHD

15

5 15 28 30 10 14 22 43 50a: b:

Example:

tmp:

i=0

k=0

3

j=0

3 6

Mergearrays

16

3 15 28 30 10 14 22 43 50a: b:

Example:

tmp:

i=1 j=0

k=1

3 5

5 6

Mergearrays

17

3 5 28 30 10 14 22 43 50a: b:

Example:

3 5tmp:

i=2 j=0

k=2

6

15 6

Mergearrays

18

3 5 28 30 6 14 22 43 50a: b:

Example:

3 5 6tmp:

i=2 j=1

k=3

15 10

10

Mergearrays

Department of Computer Science _ UHD

19

10

3 5 28 30 6 22 43 50a: b:

Example:

3 5 6tmp:

i=2 j=2

k=4

15 10 14

14

Mergearrays

20

1410

3 5 28 30 6 14 43 50a: b:

Example:

3 5 6tmp:

i=2 j=3

k=5

15 10 22

15

Mergearrays

21

1410

3 5 30 6 14 43 50a: b:

Example:

3 5 6tmp:

i=3 j=3

k=6

15 10 22

2215

28

Mergearrays

22

1410

3 5 30 6 14 50a: b:

Example:

3 5 6tmp:

i=3 j=4

k=7

15 10 22

2815

28 43

22

Mergearrays

Department of Computer Science _ UHD

23

1410

3 5 6 14 50a: b:

Example:

3 5 6tmp:

i=4 j=4

k=8

15 10 22

3015

28 43

22

30

28

Mergearrays

24

1410

3 5 6 14 50a: b:

Example:

3 5 6 30tmp:

i=5 j=4

k=9

15 10 22

15

28 43

22

30

28 43 50

Done.

Mergearrays

25

mergeArrays(float a[],int aSize,float b[],int bSize,float tmp[])

{

int k, i = 0, j = 0;

for (k = 0; k < aSize + bSize; k++)

{

if (i == aSize) {

tmp[k] = b[j];

j++;

}

else if (j == bSize) {

tmp[k] = a[i];

i++;

}

else if (a[i] <= b[j]) {

tmp[k] = a[i];

i++;

}

else {

tmp[k] = b[j];

j++;

}

} }

Algorithm of Mergearrays

Department of Computer Science _ UHD

26

1. Divide Step If a given array A has zero or one element,

simply return; it is already sorted. Otherwise, split A[p .. r]

into two sub-arrays A[p .. q] and A[q + 1 .. r], each containing

about half of the elements of A[p .. r]. That is, q is the

halfway point of A[p .. r].

2. Conquer Step Conquer by recursively sorting the two sub-

arrays A[p .. q] and A[q + 1 .. r].

3. Combine Step Combine the elements back in A[p .. r] by

merging the two sorted sub-arrays A[p .. q] and A[q + 1 .. r]

into a sorted sequence. To accomplish this step, we will

define a procedure MERGE (A, p, q, r)

Merge sort is based on the divide-and-conquer

27

Ex:- A list of unsorted elements are: 39 9 81 45 90 27 72 18

Merge sort

Department of Computer Science _ UHD

28

Sorted elements are: 9 18 27 39 45 72 81 90

Merge sort

29

 Divide it in two at the midpoint

 Conquer each side in turn (by recursively sorting)

 Merge two halves together

8 2 9 4 5 3 1 6

Merge sort

30

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

Merge sort Example

31

 The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

Auxiliary array

Auxiliary Array

Department of Computer Science _ UHD

32

 The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 Auxiliary array

Auxiliary Array

33

 The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 2 3 4 5 Auxiliary array

Auxiliary Array

Department of Computer Science _ UHD

34

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Iterative Merge sort

35

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Need of a last copy

Iterative Merge sort

36

Thank You

???

Department of Computer Science _ UHD

