ADVANCED DATA STRUCTURES
AND ALGORITHMS

Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development,
College of Science and Technology
Computer Science Department

2015 - 2016

Divide and Conquer == UHD

Recursive In structure

Divide the problem into sub-problems that
are similar to the original but smaller in size.

Conquer the sub-problems by solving them
recursively. If they are small enough, just
solve them In a straightforward manner.

Combine the solutions to create a solution to
the original problem

Department of Computer Science _ UHD

“Di1vide and Conquer”

Very important strategy in computer science:
Divide problem into smaller parts
Independently solve the parts
Combine these solutions to get overall solution

ldea 1: Divide array into two halves, recursively sort
left and right halves, then merge two halves -
Mergesort

ldea 2 : Partition array into items that are “small” and
items that are “large”, then recursively sort the two
sets = Quicksort

Department of Computer Science _ UHD

Vi . 'JUHD
Divide-and-conquer Technique —

a problem of size n

subproblem 1
of size n/2

subproblem 2
of size n/2

a solution to a solution to
subproblem 1 subproblem 2

a solution to
the original problem

Department of Computer Science _ UHD

Divide and Conquer = V5P

Sort

il TN

Sort Sort

1 AL

Sort Sort Sort Sort

Department of Computer Science _ UHD

Divide and Conquer

il
e e e

Divide and Conquer =) UHD

module sort(array)

{

If (size of array > 1)

{
split(array, firstPart, secondPart)
sort(firstPart)
sort(secondPart)
combine(firstPart, secondPart)

}
¥

Department of Computer Science _ UHD

Divide and Conquer) UHD

module sort(array)

{

If (size of array > 1)

{
split(array, firstPart, secondPart)
sort(firstPart)
sort(secondPart)
combine(firstPart, secondPart)

}
¥

Divide and Conquer = Y HD

module sort(array)

{
If (size of array > 1)
{
(array, , secondPart)

sort(firstPart)
sort(secondPart)
combine(firstPart, secondPart)

¥

¥

Divide and Conquer

module sort(array)

{

If (size of array > 1)

{

split(array, firstPart, secondPart)
()
(secondPart)
combine(firstPart, secondPart)

}
¥

Divide and Conquer =/ UHD

module sort(array)

{
If (size of array > 1)
{
split(array, firstPart, secondPart)
sort(firstPart)
sort(secondPart)
(, secondPart)
¥
J

Department of Computer Science _ UHD

Algorithm to merge sorted arrays

Merge algorithm

Assume, that both arrays are sorted in ascending order and we want resulting
array to maintain the same order. Algorithm to merge two arrays A[0..m-
1] and BJ[0..n-1] into an array C[0..m+n-1] is as following:

1) Introduce read-indices 1, j to traverse arrays A and B, accordingly.
Introduce write-index k to store position of the first free cell in the
resulting array. By defaulti=j =k =0.

2) At each step: if both indices are in range (I < m and j < n), choose
minimum of (A[i], B[j]) and write it to C[K]. Otherwise go to step 4.

3) Increase k and index of the array, algorithm located minimal value at, by
one. Repeat step 2.

4) Copy the rest values from the array, which index is still in range, to the
resulting array.

Mergearrays

3|5 |15|28]30 b:|6[10[14]22]43]|50

H_J %(_J

aSize: 5 bSize: 6

Mergearrays

¢
e

S UHD

a: Bl 5 [15]28]30 14 | 22| 43 | 50
i=0
'Lr:,r,rxp:-
<=0

Department of Computer Science _ UHD

Mergearrays

14

22

43

o0

a: s 15|28 30
(/4
Cio s 3

28 | 30

Mergearrays

30

: I 2
i1=2

14

22

43

o0

Mergearrays * _g UHD

22143 | 50

a: SIS 25 | 30
i=2

Department of Computer Science _ UHD

30

: I 2
i1=2

AU 3

K /l
’—0

5

6 10 14

Mergearrays

b: [2>

43

o0

j:

Mergearrays D UHD

a: JEEIES 25 (0] ©: IR -] so
1=2

J=3

oM 3 5 6 10 14 15

Mergearrays

.] > I

i=3 j=

i 3 5 6 10 14 15 22

Mergearrays S UHD

S T
4

i=3 j=

i 3 5 6 10 14 15 22 28

—

1=
o —
S-2 T

Department of Computer Science _ UHD

Mergearrays

a:'3 5 15 28 b: | o
4

i=4 J=

i 3 5 6 10 14 15 22 28 30

—
.I (.
=9

Mergearrays S UHD

a:[3 (5 15 28 30 b: [6NH0INAI22 43 50
4

i=5 j=

oM 3 5 6 10 14 15 22 28 30 43 50

—
I,_.)
ST

Algorithm of Mergearrays

mergeArrays (float a[] ,int aSize,float b[],int bSize,float tmp[])

{
int s idi=105, 1= 0;

for (k = 0; k < aSize + bSize; k++)
{

if (i == aSize) {
tmp[k] = b[]j]’
j++;

}
else if (j == bSize) {
tmp[k] = a[i];
i++;
}
else if (a[i] <= b[]j]) {
tmp[k] = a[i];
i++;
}
else {
tmp[k] = b[]j];
Jj++;
}
} }

Department of Computer Science _ UHD

Merge sort is based on the divide-and-congquer

1. Divide Step If a given array A has zero or one element,
simply return; it is already sorted. Otherwise, split A[p ..]
Into two sub-arrays A[p .. g] and A[q + 1 .. r], each containing
about half of the elements of A[p .. r]. That is, g Is the
halfway point of A[p .. r].

2. Conquer Step Conquer by recursively sorting the two sub-
arraysA[p ..qland A[g+ 1 ..r].

3. Combine Step Combine the elements back in Afp .. r] by
merging the two sorted sub-arrays Af[p .. q] and A[q + 1 .. r]
Into a sorted sequence. To accomplish this step, we will
define a procedure MERGE (A, p, q, I)

Merge sort
Ex:- A list of unsorted elements are: 39 9 81 4590 27 72 18

Divide the array

39| 9 |81)|45 |90 27|72 13]

39| 9 |81]45 ‘90 27

pofiosios Uﬁ

39] [2] [#1] [45] [o0] [27

Department of Computer Science _ UHD

Merge sort

‘ Merge the elements to sorted array

|39H9Ha1 45] [90] [27] [72] |18

N L

e
39 31‘ 18 27]72@0‘
R

\
‘9 18 |27 |39 (45 |72 | 81 90‘

Sorted elements are: 9 18 27 3945 72 81 90

Merge sort

Divide it in two at the midpoint
Conquer each side in turn (by recursively sorting)
Merge two halves together

Merge sort Example

Divide — TR
i) 32119114 5 316
Divide LT T A0
L1812 9 4 5 3 16
1IvVide UK 1Y \ Va\
lelement 8 2 ol 4 B L 6
) ¥ (Y 8% W
Merge ' 57 g 4 9 35 16
2 4 8 9 11811516
Merge\/

1121151415 164 58S

Auxiliary Array

The merging requires an auxiliary array.

Auxiliary array

Department of Computer Science _ UHD

Auxiliary Array

The merging requires an auxiliary array.

1 Auxiliary array

Auxiliary Array

The merging requires an auxiliary array.

1123|415 Auxiliary array

Department of Computer Science _ UHD

Iterative Merge sort

MIVTTNIKITMTATINTY

———
\ "

Merge by 1
Merge by 2
Merge by 4

Merge by 8

Iterative Merge sort

!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! Merge by 1

NN N N N A T T AT AR e R

Merge by 4

Merge by 8

Merge by 16

Need of a last co

S TS A 1
y % ¥ %
s —

- ——

Department of Computer Science _ UHD

36

