
Data Compression

Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and

Technology Computer Science Department

2015 – 2016

Advanced Data Structures and
Algorithms

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 1

2

Introduction

What is Compression? Compression is the process of

encoding data more efficiently to achieve a reduction in file

size

Advantages of Compression

1) When compressed, the quantity of bits used to store the information

is reduced.

2) Files that are smaller in size will result in shorter transmission times

when they are transferred on the Internet.

3) Compressed files also take up less storage space.

4) File compression can zip up several small files into a single file for

more convenient email transmission.

Realize the need for data compression.

Differentiate between lossless and lossy compression.

Understand three lossless compression encoding

techniques: run-length, Huffman, and Lempel Ziv.

After reading this topic, the reader should

be able to:

OBJECTIVES

Understand two lossy compression methods: JPEG and

MPEG.

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 3

©Brooks/Cole, 2003

Figure 15-1

Data compression methods

Data compression means sending or storing a smaller number of bits.

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 4

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 5

Lossless Compression

Methods

©Brooks/Cole, 2003

Lossless compression

 In lossless data compression, the integrity of the data is
preserved.

 The original data and the data after compression and
decompression are exactly the same because the
compression and decompression algorithms are exactly the
inverse of each other.

 Example:
◦ Run-length encoding

◦ Huffman encoding

◦ Lempel Ziv (L Z) encoding (dictionary-based encoding)

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 6

©Brooks/Cole, 2003

Run-length encoding

• It does not need knowledge of the frequency of occurrence of
symbols and can be very efficient if data are represented as 0s and
1s.

• For example:

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 7
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 6

©Brooks/Cole, 2003

Run-length encoding for two symbols

We can encode one symbol which is more frequent than the other.

This example only encode 0’s between 1’s.

There is no 0 between 1’s

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 8
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 7

14

12
0

4

©Brooks/Cole, 2003
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 9

 Code the run length of 0’s using k bits. Transmit the code.

 Do not transmit runs of 1’s.

 Two consecutive 1’s are implicitly separately by a zero-length

run of zero.

Example: suppose we use k = 4 bits to encode the run length

(maximum run length of 15) for following bit patterns.

Binary Run-length encoding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 9
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 7

©Brooks/Cole, 2003
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 10DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 10

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 8

Data files frequently contain the same character repeated many

times in a row. For example, text files use multiple spaces to

separate sentences, indent paragraphs, format tables & charts, etc.

Example: run-length encoding for a data sequence having

frequent runs of zeros

Note: many single zeros in the data can make the encoded file larger than the original.

©Brooks/Cole, 2003
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 11

The following algorithm generates Huffman code:

 Find (or assume) the probability of each values occurrence.

 Initialization: Put all nodes in an list, keep it sorted at all times
(e.g., ABCDE).

 Take the two symbols with the lowest probability, and place
them as leaves on a binary tree.

 Form a new row in the table replacing the these two symbols
with a new symbol. This new symbol forms a branch node in
the tree. Draw it in the tree with branches to its leaf
(component) symbols

 Assign the new symbol a probability equal to the sum of the
component symbol’s probability.

Huffman coding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 11DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 11
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 11

©Brooks/Cole, 2003
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 12

 Repeat the above until there is only one symbol left. This is the
root of the tree.

 Nominally assign 1’s to the right hand branches and 0’s to the
left hand branches at each node.

 Read the code for each symbol from the root of the tree.

Huffman coding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 12DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 12DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 12
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 11

David Huffman

©Brooks/Cole, 2003

Table 15.1 Frequency of characters

Character A B C D E
--
Frequency 17 12 12 27 32

Huffman coding

o In Huffman coding, you assign shorter codes to symbols that occur
more frequently and longer codes to those that occur less
frequently.

o The process of building the tree begins by counting the
occurrences of each symbol in the text to be encoded.

o For example:

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 13DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 13
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 9

Figure 15-4

Huffman coding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 14

Figure 15-5

Final tree and code

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 15

Figure 15-6

Huffman encoding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 16

Figure 15-7

Huffman decoding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 17

©Brooks/Cole, 2003

Huffman coding

 The beauty of Huffman coding is that no code in the
prefix of another code.

 There is no ambiguity in encoding.

 The receiver can decode the received data without
ambiguity.

 Huffman code is called instantaneous (immediate)
code because the decoder can unambiguously decode
the bits instantaneously with the minimum number of
bits.

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 18DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 18DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 18
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 15

©Brooks/Cole, 2003

Lempel Ziv encoding

 LZ encoding is an example of a category of
algorithms called dictionary-based encoding.

 The idea is to create a dictionary (table) of strings
used during the communication session.

 The compression algorithm extracts the smallest
substring that cannot be found in the dictionary
from the remaining non-compressed string.

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 19DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 19DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 19
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 16

Abraham Lempel Jacob Ziv

Figure 15-8:Part I

Example of Lempel Ziv encoding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 20

Figure 15-8:Part 2

Example of Lempel Ziv encoding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 21

Figure 15-9: Part I

Example of Lempel Ziv decoding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 22

Figure 15-9: Part II

Example of Lempel Ziv decoding

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 23

©Brooks/Cole, 2003
DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 24DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 24DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 24DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 24DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 24

DEPARTMENT OF COMPUTER SCIENCE- ADSA - UHD 22

