Advanced Data Structures and Algorithms

Associate Professor Dr. Raed Ibraheem Hamed

Computer Science Department
College of Science and Technology
University of Human Development,

$$
2015-2016
$$

Department of Computer Science _ UHD

What this Lecture is about:

- A disjoint-set data structure
- Disjoint Set Operations
- An Application of Disjoint-Set
- An Application of Disjoint-Set Data Structures
- Linked-List Implementation
- Linked-lists for two sets
- Disjoint-set Implementation: Forests
- Algorithm for Disjoint-Set
- Example

A disjoint-set data structure

- A disjoint-set is a collection $\mathbf{S}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{k}\right\}$ of distinct dynamic sets.
- Is a data structure that keeps track of a set of elements partitioned into a number f disjoint subsets.
- Each set is identified by a member of the set, called representative.

Two disjoint sets A and B

Disjoint set operations:

- MAKE-SET(x): create a new set with only x. assume x is not already in some other set.
- UNION(x, y): combine the two sets containing x and y into one new set. A new representative is selected.
- FIND-SET(x): returns a pointer to the representative of the unique set containing x. Find: Determine which subset a particular element is in.

An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph $G=(V, E)$

An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph $G=(V, E)$

Initial	\{a\}	\{b\} $\quad\{\mathrm{c}\}$	\{d $\}$	\{e\}	\{f \}	g $\}$	\{h\}	\{i\}	
(b, d)	\{a\}	$\{\mathrm{b}, \mathrm{d}\}$ \{c\}		\{e\}	\{f $\}$	g \}	\{h\}		

An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph $G=(V, E)$

An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph $G=(V, E)$

An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph $G=(V, E)$

An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph $G=(V, E)$

An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph $G=(V, E)$

Initial	$\{\mathrm{a}\} \quad\{\mathrm{b}\} \quad\{\mathrm{c}\}$	\{d\}	\{e\} \quad f	$\{\mathrm{g}$ \}		\{i\}	\{j\}
(b, d)	\{a\} $\{\mathrm{b}, \mathrm{d}\}\{\mathrm{c}\}$		\{e\} $\{\mathrm{f}$	\{g\}	\{ h \}	\{i\}	\{j\}
(e, g)	\{a\} $\{\mathrm{b}, \mathrm{d}\}\{\mathrm{c}\}$		$\{\mathrm{e}, \mathrm{g}\} \quad\{\mathrm{f}$			\{i\}	\{j\}
(a, c)	$\{\mathrm{a}, \mathrm{c}\}\{\mathrm{b}, \mathrm{d}\}$		$\{\mathrm{e}, \mathrm{g}\} \quad\{\mathrm{f}$			\{i\}	\{j\}
(h, i)	$\{\mathrm{a}, \mathrm{c}\}\{\mathrm{b}, \mathrm{d}\}$		$\{\mathrm{e}, \mathrm{g}\} \quad\{\mathrm{f}$		\{h, i\}		\{j\}
(a, b)	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$		$\{\mathrm{e}, \mathrm{g}\} \quad\{\mathrm{f}$		\{h, i \}		\{j\}
(e, f)	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$		\{e, f, g\}		\{h, i\}		\{j\}

An Application of Disjoint-Set Data Structures

Determining the connected components of an undirected graph $G=(V, E)$

Linked-List Implementation

- Each set as a linked-list, with head and tail, and each node contains value, next node pointer and back-to-representative pointer.
- Example:
- MAKE-SET costs $O(1)$: just create a single element list.
- FIND-SET costs $O(1)$: just return back-torepresentative pointer.

Linked-lists for two sets

UNION of two Sets

Disjoint-set Implementation: Forests

- Rooted trees, each tree is a set, root is the representative. Each node points to its parent. Root points to itself.

UNION

Disjoint Set Forests

Department of Computer Science- ADSA - UHD

Disjoint Set Forests

Path Compression

Path Compression: used in FIND-SET(x) operation, make each node in the path from x to the root directly point to the root. Thus reduce the tree height.

Path Compression

Path Compression

- Use it during the FIND-SET operations
- Make each node on the FIND-PATH to point directly to the root

Path Compression

Path Compression During FIND-SET(b) Operation

Algorithm for Disjoint-Set

function MakeSet(x)
 x.parent := x

function Find (x)
if x. parent $=\mathrm{x}$
return x
Else
return Find(x.parent)
function $\operatorname{Union}(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& \text { xRoot }:=\operatorname{Find}(\mathrm{x}) \\
& \text { yRoot }:=\text { Find }(\mathrm{y}) \\
& \text { xRoot.parent }:=\mathrm{yRoot}
\end{aligned}
$$

Example

Consider the following disjoint set on the ten decimal digits:

0									
	1	2	3	4	5	6	7	8	9

$$
\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\}
$$

Example

If we take the union of the sets containing 1 and 3
set_union(1, 3);
we perform a find on both entries and update the second

0	1	2	3	4	5	6	7	8	9
0	1	2	1	4	5	6	7	8	9
4	\uparrow	\uparrow		4	\uparrow	4	4	4	\uparrow
0	1	2		4	5	6	7	8	9

$$
\{0\},\{1,3\},\{2\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\}
$$

Example

Now, find(1) and find (3) will both return the integer 1

0	1	2	3	4	5	6	7	8	9
0	1	2	1	4	5	6	7	8	9
4	4		4	4	4	4	4	4	
	1	(2)		4	5	6	7	8	9

$$
\{0\},\{1,3\},\{2\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\}
$$

Example

Next, take the union of the sets containing 3 and 5 , set_union (3, 5);
we perform a find on both entries and update the second

0	1	2	3	4	5	6	7	8	8
0	1	2	1	4	1	6	7	8	9

$$
\{0\},\{1,3,5\},\{2\},\{4\},\{6\},\{7\},\{8\},\{9\}
$$

Example

Now, if we take the union of the sets containing 5 and 7 set_union(5, 7);
we update the value stored in find(7) with the value find(5):

$$
\{0\},\{1,3,5,7\},\{2\},\{4\},\{6\},\{8\},\{9\}
$$

Example

Taking the union of the sets containing 6 and 8 set_union(6, 8);
we update the value stored in find(8) with the value find(6):

$$
\{0\},\{1,3,5,7\},\{2\},\{4\},\{6,8\},\{9\}
$$

Example

Taking the union of the sets containing 8 and 9 set_union $(8,9)$;
we update the value stored in find(8) with the value find(9):

$$
\{0\},\{1,3,5,7\},\{2\},\{4\},\{6,8,9\}
$$

Example

Taking the union of the sets containing 4 and 8 set_union (4, 8);
we update the value stored in find(8) with the value find(4):

$\{0\},\{1,3,5,7\},\{2\},\{4,6,8,9\}$

Example

Finally, if we take the union of the sets containing 5 and 6 set_union(5, 6);
we update the entry of find(6) with the value of find(5):

0	1	2	3	4	5	6	8	8	
0	1	2	1	1	1	4	1	6	6

$$
\{0\},\{1,3,4,5,6,7,8,9\},\{2\}
$$

THANK YOU

