

## Advanced Data Structures and Algorithms

Associate Professor Dr. Raed Ibraheem Hamed

Computer Science Department
College of Science and Technology
University of Human Development,

$$
2015-2016
$$

## Random Numbers

I flipped a coin 30 times:

## НТНТНННТТТНННТНТТТТТТННННННТТН

One may almost suggest such a sequence is not random; what is the probability of getting 6 tails and then 6 heads?

- Unfortunately, this is exactly what we got with the first attempt to generate such a sequence, and is as random a sequence as we can generate.


## Randomized Data Structures

One application of randomized algorithms in the area of data structures, specifically, Treaps and lists.

## Randomized Data Structures



## Treaps <br> Skip lists

## Treaps

- First introduced in 1989 by Aragon and Seidel
- Randomized Binary Search Tree
- A combination of a binary search tree and a heap (a "tree heap")
- Each node contains
- Data / Key (comparable)
- Priority (random integer number)
- Left, right child reference
- Nodes are in BST order by data/key and in heap order by priority random integer number.
- Every subtree of a treap is a treap


## Treaps Definition

A treap is a binary search tree in which every node has both a search key and a priority, where the inorder sequence of search keys is sorted and each node's priority is smaller than the priorities of its children.

## Tree + Heap $=$ Treaps

The search tree has the structure that would result if elements were inserted in the order of their priorities.

Definition: A treap is a binary tree. Each node contains one element $x$ with $\operatorname{key}(\mathrm{x}) \in \mathrm{U}$ and $\operatorname{prio}(\mathrm{x}) \in \mathrm{R}$. The following properties hold.

## Search tree property

For each element x:

- elements $y$ in the left subtree of $x$ satisfy: $\operatorname{key}(y)<\operatorname{key}(x)$
- elements $y$ in the right subtree of $x$ satisfy : $\operatorname{key}(y)>\operatorname{key}(x)$


## Heap property

For all elements $\mathrm{x}, \mathrm{y}$ :

- If $y$ is a child of $x$, then $\operatorname{prio}(y)>\operatorname{prio}(x)$.
- All priorities are pairwise distinct.


## Treap : Dictionary Data Structure

- Treap is a binary search tree
- binary tree property
- search tree property

Treap is also a heap

- heap-order property
- randomly assigned priorities

Heap in Yellow; Search Tree in Blue

## A Treap Example



ABCDEFGHIJKLMNOPQRSTUVWXYZ

## Treaps

There is only one possible treap for a given set of Keys and priorities Proof:

- by heap property: the key $\mathbf{k}$, with the highest priority must be the root of the treap
- by BST property: all keys < k must be in the left subtree of the root and all keys > k must be in the right subtree
- Inductively, the subtrees of the root must be constructed in the same manner
i.e. by heap property: the root of the LST, k1, must have the highest priority of any key in the LS and by BST: all keys in LST of k 1 are < k 1 and all keys in RST of k 1 are $>\mathrm{k} 1$

Treap Insert

- Choose a random priority
- Insert as in normal BST
- Rotate up until heap order is restored



## Binary Tree Rotation (Left or Right)

Let P be Q's left child. Set P to be the new root." Basically that's the description of the rotation to the right or clockwise:


## Binary Tree Rotation (Left or Right)



## Binary Tree Rotation (Left or Right)

The right rotation operation as shown in the image to the left is performed with $Q$ as the root and hence is a right rotation on, or rooted at, $Q$. This operation results in a rotation of the tree in the clockwise direction. The inverse operation is the left rotation, which results in a movement in a counter-clockwise direction (the left rotation shown above is rooted at $P$ ). The key to understanding how a rotation functions is to understand its constraints.

## Binary Tree Rotation (Left or Right)



## Binary Tree Rotation（Left or Right）

$\mathrm{T} 1, \mathrm{~T} 2$ and T 3 are subtrees of the tree rooted with y （on left side） or x （on right side）

| y |  | x |
| :---: | :---: | :---: |
| 八 | Right Rotation | 1 |
| x T3 | ＞ | T1 y |
| 八 | $<-$－－－－－ | 八 |
| T1 T2 | Left Rotation | T2 T3 |

Keys in both of the above trees follow the following order
$\operatorname{keys}(\mathrm{T} 1)<\operatorname{key}(\mathrm{x})<\operatorname{keys}(\mathrm{T} 2)<\operatorname{key}(\mathrm{y})<\operatorname{keys}(\mathrm{T} 3)$
So BST property is not violated anywhere．

## Tree + Heap... Why Bother?

- Insert data in sorted order into a treap ... What shape tree comes out?


The shape of the tree is fully specified by what the keys are and what their random priorities are!
insert(8)

insert(12)


## Insert J with priority 2



## Treap Delete Strategy

- Find the key
- Increase its value to $\infty$
- When X is found, rotate with child that has the smaller priority
- If X is a leaf, just delete it
- If $X$ is not a leaf, recursively remove $X$ from its new subtree
- Snip it off


## Treap Delete Strategy



## Treap Delete Strategy



## Treap Delete Strategy



Step 2 - Rotate K with Right Child ( N )


## Treap Delete Strategy



## Treap Delete Strategy



## Step 4-K is a leaf delete K

Treap Delete Strategy
Delete (9)


Department of Computer Science _

## Thank you ??

