
Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology

Computer Science Department

2015 – 2016
1Department of Computer Science _ UHD

What this Lecture is about:

☼ Expression Trees

☼ Height and Depth

☼ Balanced Binary Trees

☼ 2-3 Tree

☼ 2-3 Tree: Definition

☼ 2-3 Tree: Example

☼ 2-3 Tree: Efficiency

Department of Computer Science _ UHD
2

Department of Computer Science _ UHD 3

A binary arithmetic expression is made up of numbers joined by

binary operations ∗ , + , / , ̶

Binary arithmetic expressions

by using parentheses we can indicate the order in

which the operations are to be done. In this example the

parentheses indicate that the addition is to be done before the

multiplication.

(6(3 + 4)) This is another way of writing (6×(3 + 4)).

(6×(3 + 4)) = (6×7)=42

(6×(3 + 4))

Expression Trees

Department of Computer Science _ UHD 4

Arithmetic expressions are representable by
labeled trees, and it is often quite helpful to
visualize expressions as trees.

Expression Trees

Department of Computer Science _ UHD 5

Expression Trees

An expression tree is a binary tree with these properties:

1. Each leaf is an operand.

2. The root and internal nodes are operators.

3. Subtrees are subexpressions with the root being an operator.

Department of Computer Science _ UHD
6

Expression Trees

Department of Computer Science _ UHD 7

Expression Trees

Department of Computer Science _ UHD 8

(

Height and Depth

Department of Computer Science _ UHD 9

Tree with seven nodes.

In a tree, the height of a node n is the length of a longest path
from n to a leaf.
The height of the tree is the height of the root. The depth, or
level, of a node n is the length of the path from the root to n.

Height and Depth

҈ In this figure , node n1 has height 2, n2 has height
1, and leaf n3 has height 0.

҈ In fact, any leaf has height 0.

҈ The tree in this figure has height 2.

҈ The depth of n1 is 0, the depth of n2 is 1, and the
depth of n5 is 2.

Department of Computer Science _ UHD 10

Height and Depth

Department of Computer Science _ UHD 11

Height = 4

Height and Depth

Department of Computer Science _ UHD 12

Balanced Binary Trees

• Recall that a binary tree is balanced if the difference in

height between any node’s left and right subtree is 1.

Department of Computer Science _ UHD 13

Balanced Binary Trees

Department of Computer Science _ UHD 14

Example 1 Example 2

Department of Computer Science _ UHD 15

Balanced Binary Trees

16

2-3 Tree

• Intuitively, a 2-3 tree is a tree in which each
parent node has either 2 or 3 children, and all
leaves are at the same level.

• According to Donald Knuth, 2-3 trees were
invented by John E. Hopcroft.

Department of Computer Science _ UHD

17

2-3 Tree: Definition

Formally, T is a 2-3 tree of height h if

a) T is empty (h = 0); OR

b) T consists of a root and 2 subtrees, TL , TR :

o TL and TR are both 2-3 trees, each of height h – 1,

o the root contains one data item with search key S,

o S > each search key in TL ,

o S < each search key in TR ; OR …

S

TL TR

root
T

Department of Computer Science _ UHD

18

2-3 Tree: Definition

c) T consists of a root and 3 subtrees, TL , TM , TR :

• TL , TM , TR are all 2-3 trees, each of height h – 1,

• the root contains two data items with search keys S and L,

• each search key in TL < S < each search key in TM ,

• each search key in TM < L < each search key in TR .

TL TR

root
T

TM

S L

Department of Computer Science _ UHD

S is called the left value of the 3-node; L is

called the right value of the 3-node; TL is

its left subtree; TM is its middle subtree;

and TR is its right subtree.

19

2-3 Tree: Example

50 90

20 70 120 150

10 60 80 100 130 140 16030 40

 Each non-leaf has 2 or 3 children,

 All leaves are at the same level, and

 Each node contains either one or two key values

Department of Computer Science _ UHD

Department of Computer Science _ UHD 20

2-3 Tree: Examples

21

2-3 Tree: Efficiency

Insertion can be defined so that the 2-3 tree
remains balanced and its other properties are
maintained.

Department of Computer Science _ UHD

22

2-3 Tree Insertion: Basic Idea

1) Find the leaf where a new item, X, should be inserted and insert it.

2) If the leaf now contains 2 items, you are done.

3) If the leaf now contains 3 items, X, Y, Z, then

• replace the leaf by two new nodes, n1 and n2, with the smallest of
X, Y, Z going into n1, the largest going into n2, and the middle value
going into the leaf’s parent node, p ;

• make n1 and n2 children of parent p.

4) If parent p now contains 2 items (and has 3 children) you are done.

5) If parent p now contains 3 items (and has 4 children) proceed as in step
3, except that

• p’s two leftmost children are attached to n1, and

• p’s two rightmost children are attached to n2.

6) Repeat steps 3 - 5, until arriving at a parent node containing 2 items.

Department of Computer Science _ UHD

Department of Computer Science _ UHD 23

In the following rules, the result of inserting an element v into a 2-3 tree

is depicted as a circled v with an arrow pointing down toward the tree in

which it is to be inserted. X and Y are variables that stand for any

elements, while triangles labeled l, m, and r stand for whole subtrees.

2-3 Tree Insertion:

Department of Computer Science _ UHD 24

2-3 Tree Insertion:

Department of Computer Science _ UHD 25

2-3 Tree Insertion:

26

2-3 Tree Insertion: Example

30 39

10 20 37 38 40

30 39

10 20 36 37 38 40

Insert 36

Department of Computer Science _ UHD

27

2-3 Tree Insertion: Example

• Since the leaf with 36 in it now
contains 3 items, replace the leaf
by two new nodes containing 36
(the smallest) and 38 (the largest).

• Move 37 (the middle value) up to
its parent, p.

• Make nodes containing 36 and 38
children of parent, p.

30 37 39

10 20 4036 38

p

30 39

10 20 36 37 38 40

p

Department of Computer Science _ UHD

28

2-3 Tree Insertion: Example

• Since node p now contains 3 items,
replace p by two new nodes
containing 30 (the smallest) and 39
(the largest).

• Since p has no parent, create a new

node, r, and move 37 (the middle
value) into it.

• Make nodes containing 30 and 39

children of r.

• Finally, p’s leftmost children are
attached to the node containing 30;
p’s rightmost children are attached to
the node containing 39.

30 37 39

10 20 4036 38

p

10 20 4036 38

30 39

37r

Department of Computer Science _ UHD

Department of Computer Science _ UHD 29

2-3 Tree Properties

oEach node can store up to two key values and up to three pointers.

Department of Computer Science _ UHD 30

2-3 Tree Properties

Department of Computer Science _ UHD 31

If a subtree is sufficiently full, insertion may cause the parent to split:

2-3 Tree Splitting

Thank you

???

Department of Computer Science _ UHD 32

