ADVANCED DATA STRUCTU w
AND ALGORITHMS

Associate Professor Dr. Raed lbraheem Hame

University of Human Development, College of Science and Tech
Computer Science Department

Department of Computer Science _ UHD

What this Lecture is about:

CE——

» - Stack Structure
» Stack Definition
» Primary operations
» Stack Declaration
2 push Algorithm
- pop Algorithm
» Implementation

Department of Computer Science _ UHD

Stack Structure &

I

A stack is a collection that implements the last-in-first-out (LIFO)
protocol. This means that the only accessible object in the
collection Is the last one that was inserted. A stack of books is a
good analogy: You can’t take a book from the stack without first

removing the books that are stacked on top of it.

(" PHYSIC {

((HE\IISH ‘1 ‘
(RTORY
(LirERATURE l

(';F,()GRAPH\“'

Department of Computer Science _ UHD

4 UHD
Stack Definition u&

S

A Data structure in which elements are added and
removed from one end; “Last in, First out” LIFO
Structure.

((HL\HSI Y

(FASTORY |
(HlHtUllﬂ,l

GEOGRAPpP 1S8%

Department of Computer Science _ UHD

3 UHD

Em

Stack Operations

N

The fundamental operations of a stack are:
1. Create : Create an empty stack.

2. Push : Add an element onto the top of
the stack.

3. Pop : Remove the current element on
the top of the stack.

4. Retrieveor peak : which reads data without
removing it, on the top of the stack.

Department of Computer Science _ UHD -

| . « UHD
Primary operations -

S—
* Push
— Add an element to the top of the stack
* Pop
— Remove the element at the top of the stack

empty stack

top

Department of Computer Science _ UHD

. . « UHD
Primary operations i =

O
* Push
— Add an element to the top of the stack

* Pop
— Remove the element at the top of the stack

empty stack push an element

top
top

Department of Computer Science _ UHD

. . « UHD
Primary operations -

O

* Push
— Add an element to the top of the stack

* Pop
— Remove the element at the top of the stack

empty stack push an element push another
adl :
top
top —

Department of Computer Science _ UHD

Primary operations

O

* Push

* Pop

top

— Add an element to the top of the stack

— Remove the element at the top of the stack

empty stack push an element push another
adl :
top
—

Department of Computer Science _ UHD

top

{\l \\%\
N\ iz / UNVERSITY OF HUMAN DEVELOPMENT

POp

\

AUHD

\-.--/ UNIVERSITY OF HUMAN DEVELOPMENT

Stack Operations =

O

Create

Stack

fop = -1 S

Department of Computer Science _ UHD

/ /’"“V\\
N

« UHD

\Geticions / UNIVERSITY OF HUMAN DEVELOPMENT

Stack Operations =

—
Create
Stack push 10
-
fop = -1 s

Department of Computer Science _ UHD

Stack Operations

—
Create
Stack push 10
o
fop —» 04 10
fop = -1 S

Department of Computer Science _ UHD

1

/“"“‘v\\

6

-

« UHD

/ UNIVERSITY OF HUMAN DEVELOPMENT

'@%‘ UHD

AN~ ————] .f ERSITY OF HUMAN DEVE

Stack Operations

O
g;::kre push 10 push 79 .
> fop—» 14 79
fop —» (04 10 04 10
fop=-1 8 s s

Department of Computer Science _ UHD

- S UHD
Stack Operations *

O

Create
Stack push 10 push 79 .
>
fop —» 14 79
fop —= 04__10 o4 10
top=-1 s < p
push 45
—
fop —» 249 45
1 79
0 10

Department of Computer Science _ UHD

: g_é‘UHD
Stack Operations

O

Create
Stack push 10 push 79 .
fie
top —» 14 79
fop —» (04 10 o4 10
top=-1 s 5 =
ush 45
i | pop 45
fop —» 24 45 >
14 79
04 10

Department of Computer Science _ UHD

: @ UHD
Stack Operations L) o

g‘fc?e push 10 push 79 .

- fop—» 14 79

fop —» 04 10 04 10

fop=-1 s " s

push 45 pop 45
top —» 24 45 e

179 fop —e 14 79
01_10 01_10
§ s

Department of Computer Science _ UHD

: « UHD
Stack Operations L=

O

g’;ze;{/cte push 10 push 79 .
g top —» 14 79
top —» 04__10 o4 10
fop=-1 s m g
push 45 pop 45 push 38 .
pi—= 2 g top —»2{_38
17 top —» 1479 19
10 01_10 0{ 10
s o =

Department of Computer Science _ UHD

Sta c k O p e rat i O n S N/ ST F WA RO

‘(S:;’;Iec?/[cte push 10 push 79 .
g top —» 14 79
top —» 04__10 o4 10
fop = -1 S 5 2
push 45 pop 45 push 38 .
pi—= 2 g top —»2{_38
17 top —» 1479 19
01__10 o4 10 ol 10
s o =
pop 38
—

fop —» 14 79

Department of Computer Science _ UHD

- « UHD
Stack Operations L) Seniuiie

;’:;Ze push 10 push 79 .
i top —» 14 79
top —» 04__10 o4 10
fop = -1 s - -
push 45 pop 45 push 38 .
op —» 29 45 = top —w» 2433
11 79 top —» 14 79 14 79
04 10 od 10 ol 10
S S -
pop 38
—_ pop 79
-
top —» 14 79
04 10 top —» 04 10
S S

Department of Computer Science _ UHD

: « UHD
Stack Operations £ Srisii

Create
ush 79
Stack push 10 _ p _
top —» 14 79
fOp —» () 10 O_ 10
fop = -1 s - -
B push 38
op —w» 2 - 45 o . 5 =
I B top —e 1479 ol
O’ 10 O_ 10 O-— 10
S = -
pop 38
S pop 79
o pop 10
top —» 14 79 .
01_10 top — 04__10
? < top = -1 g

Department of Computer Science _ UHD

2 UHD

Implementing a stack with an array: =

R

First, if we want to store letters, we can use type char. Next, since a stack
usually holds a bunch of items with the same type (e.g., char), we can use

an array to hold the contents of the stack.

Now, consider how we'll use this array of characters, call it contents, to hold

the contents of the stack.

Let's choose the array to be of size 4 for now. So, an array getting A, then B,
will look like:

| Al B [

] 1 2 3
contents

Department of Computer Science _ UHD

#r%ﬁ

Implementing a stack with an array:
What happens if we apply the following set of operations?

1.Push(stack, 'D’")
2.Push(stack, 'E")
3.Push(stack, 'F')
4.Push(stack, 'G")

giving:

stack (made up of 'contents' and "top’)

Dl E|lF |G| | 3]
@ 1 2 3 top
contents

Department of Computer Science _ UHD

» UHD

Stack Declaration

A————

When implementing a data structure, the first issue to be
addressed is which foundational data structure to use. Often,
the choice is between an array-based implementation and a
linked-list implementation. The next sections present an array-
based implementation of stacks.

public static class StackX

{

private static int Size; // size of stack array
private static int[] item;

private static int top; // top of stack

}

Department of Computer Science _ UHD

/

JUHD
\—'::: INIVERSITY OF HUMAN DEVELOPMENT

Stack Functions

E——

For implementing the stack operation we must
construct a Java function for each original operations
and the other operations:

Create Stack Function

public StackX(int s) // constructor

{
Size =s; // set array size
item = new int[Size]; // create array
top =-1; // no items yet

}

Department of Computer Science _ UHD

: 9 UHD
Push Algorithm

O
Input: x as input New element.

Stack before pushing x
Output: Stack after pushing x.
1- [overflow]

if top>=N
Then Over flow
2- [increment pointer]
top «— top+l
3- [insert element]
Stack[top] «— New element x

Department of Computer Science _ UHD

(N

)

e
=t F HUMAN DEVELOPMENT

UNIVERSITY 0

Pop Algorithm

Input: stack before popping element
Output: Stack after popping element.

1-[underflow]
if top<=-1 Then under flow
2-[unstack element]
element «<— Stack[top]
3-[decrement pointer]
top <— top-1

Department of Computer Science _ UHD

(SN
O\
imeiase /- (INIVERSITY OF HUMAN DEVELOPMENT

.
s v

Implementation

O
public static boolean is Full()

{
if(top>=size-1)
return true;
else
return false;

}
public static boolean is Empty()

{
if(top==-1)
return true;
else
return false; }

Department of Computer Science _ UHD

:) UHD
Implementation) i

O
public static void push(int item)
{
if(isFull())
System.out.printin("error...the stack is full“);
else

{

NGLISH |

top=top+1; S |
. (pHYSICS . |
StaCk[tO p] =|tem; (CHEMISTRY ‘

(ETORY ™|

(LITERATURE | ===
[

Department of Computer Science _ UHD

N
e
\ i / F HUMAY DEVELOPMENT

JNIVERSITY O

Implementation

R
public static int pop()
{
if(isEmpty())
System.out.printin("error...the stack is empty“);
else
{ T
item=stack[top]; e
top=top-1;
return item;

}

return O;

}

Department of Computer Science _ UHD

(N

)

e
=t F HUMAN DEVELOPMENT

UNIVERSITY 0

Implementation

O

* Retrieve or Peak element from Stack Function

public int retrieve()
/[take item from top of Stack
{

return stackArray[top];

/[access item,

Department of Computer Science _ UHD

=

Applications of STACKS w UHD

———

e Stacks can be used to reverse a sequence. For
example, if a string "Computers” is entered by
the user the stack can be used to create and
display the reverse string “sretupmoC” as
follows.

* The program simply pushes all of the characters
of the string into the stack. Then it pops and
display until the stack is empty.

Department of Computer Science _ UHD

A Sample Application That Uses A Stack To Reverse A List Of Numbers. UHD

[et
et

import java.util.Stack;
|

public class StackDemo

1

public static void main{String args[])

{

/f Create a new, empty stack
Stack lifo = new Stack();

/4 Let's add some items to it
for (int 1 = 1; 1 <= 1@; i++)

1
}

/¢4 Last in first out means reverse order
while { !lifo.empty())
{

lifo.push { new Integer(i} };

System.out.print { lifo.pop());
System.out.print { ',");

/f Empty, let's lift off!
System.out.println (" LIFT-OFF!"™);

Department of Computer Science _ UHD

6
)

sz / INIVERSITY OF HUMAN DEVELOPMENT

Thank you
277

Department of Computer Science _ UHD

