

Advanced Data Structures and Algorithms

Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology

Computer Science Department

2015 - 2016

What this Lecture is about:

- Petri Net as a Graph
- ⇔ Petri Net Components
- **Example of Petri Net**
- ☼ Petri Net terminology
- ⇔ Firing a Transition
- ☼ Petri Net Transition enabling
- Enabling condition
- ☆ Initial marking

Petri Net as a Graph

Petri net was developed in the early 1960s by Carl Adam Petri's dissertation from Germany.

A **Petri net** is a directed graph, in which the nodes represent transitions (i.e. events that may occur, signified by bars) and places (i.e. conditions, signified by circles).

Petri Net as a Graph

- Graph contains 2 types of nodes
 - Circles (Places)
 - Bars (Transitions)
- Petri net has dynamic properties that result from its execution
 - Markers (Tokens)
 - Tokens are moved by the firing of transitions of the net.

Petri Net Components

UNIVERSITY OF HUMAN DEVELOPMENT

Place/Transition Net

A Place/Transition Net (P/T net) is a tuple $N = \langle P, T, F, W, M_0 \rangle$, where

- P is a finite set of places,
- T is a finite set of transitions,
- the places P and transitions T are disjoint $(P \cap T = \emptyset)$,
- $F \subseteq (P \times T) \cup (T \times P)$ is the flow relation,
- W: F → (N \ {0}) is the arc weight mapping, and
- $M_0: P \to \mathbb{N}$ is the initial marking representing the initial distribution of tokens.

Place/Transition Net: Example

The place/transition net $\langle P, T, F, W, M_0 \rangle$ above is defined as follows:

- $P = \{p_1, p_2, p_3\},\$
- $T = \{t\}$,
- $F = \{\langle p_1, t \rangle, \langle p_2, t \rangle, \langle t, p_3 \rangle\},\$
- $W = \{\langle p_1, t \rangle \mapsto 2, \langle p_2, t \rangle \mapsto 1, \langle t, p_3 \rangle \mapsto 2\},$
- $M_0 = \{p_1 \mapsto 2, p_2 \mapsto 5, p_3 \mapsto 0\}.$

Example of Petri Net

Petri Net - terminology

This Petri net has:

- 2 places: p1, p2
- 1 transition: t1
- p1 has 1 token: f(p1) = 1
- p2 has 0 tokens: f(p2) = 0

Firing a Transition

When a transition tj fires

Each pi that has an edge from pi to tj removes a token from pi

Each pj that has an edge from tj to pj adds a token to pj

Petri net before t1 fires:

Petri net after t1 fires:

A transition must be enabled before it fires:

There is a token in each input place pi that has an edge from place to the transition.

the transition t1 can fire

the transition t1 cannot fire

Firing a Transition

Petri net before t1 fires:

Petri net after t1 fires:

- weight of the P2 T3 edge is 4
- place P2 contains only 33 tokens
- transition T3 is not enabled (for one car we need four wheels)
- transition T3 cannot be fired

Original Petri Nets

Weighted Petri Nets

- Generalized the original Petri net to allow multiple tokens to be added/removed when a transition fires.
- The edges are labeled with the weight (i.e., number of tokens)
- If there is no label, then the default value is 1

Original Petri Nets

Weighted Petri net before t1 fires:

Weighted Petri net after t1 fires:

Firing a transition

Transitions consume tokens from the input places and produce tokens in the output places

Transitions are the active components and places and tokens are **passive**. A transition is **enabled** if each of the input places contains tokens.

Transition t1 is not enabled,

transition t2 is enabled.

Petri net before t1 fires:

Petri net after t1 fires:

Initial marking $M0 = \{1, 0\}$

New marking $M1 = \{0, 1\}$

Initial marking

Initial marking $M0 = \{1, 1, 0\}$

New marking $M1 = \{0, 0, 1\}$

Initial marking

Initial marking $M0 = \{2, 2, 1, 0, 0\}$

New marking $M1 = \{1, 0, 0, 1, 1\}$

$$P = \{p_1, p_2, p_3, p_4\};$$

$$T = \{t_1, t_2, t_3\};$$

$$I(t_1, p_1) = 2,$$

$$I(t_2, p_2) = 1,$$

$$I(t_3, p_3) = 1,$$

$$O(t_1, p_2) = 2, O(t_1, p_3) = 1,$$

$$O(t_2, p_4) = 1,$$

$$O(t_3, p_4) = 1,$$

$$M_0 = (2 \ 0 \ 0 \ 0)^{\mathsf{T}}.$$

Thank you

