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What this Lecture is about:
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Graph Related Concepts
Vertex Degree

In-Degree of a Vertex
Out-Degree of a Vertex

Sum of In- and Out-DegreesG
Complete Undirected Graphs
Graph terminology

Shortest Paths

Depth-First Search (DFS)
Depth-First Search algorithm
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Definition of Some Graph w UHD
Related Concepts

« Let G be adirected graph

— The /ndegree of a node x in G Is the number of
edges coming to x

— The outdegree of x Is the number of edges
leaving X.
» Let G be an undirected graph

— The degree of a node x Is the number of edges
that have x as one of their end nodes

— The neighbors of x are the nodes adjacent to X
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Vertex Degree

 The degree of vertex /is the no. of edges incident on vertex .
e.g., degree(2) = 2, degree(5) = 3, degree(3) =1
Unlike trees, a graph can have cycles:
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Sum of Vertex Degrees

Sum of degrees = Ze (where eis the number of edges)
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In-Degree of a Vertex

* In-degree of vertex /7 is the number of edges incident to /7 (i.e.,
the number of incoming edges).

e.g., indegree(2) = 1, indegree(8) =0
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Out-Degree of a Vertex

» Qut-degree of vertex /is the number of edges incident from /
(.e., the number of outgoing edges).

* e.g., outdegree(2) = 1, outdegree(8) = 2
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Sum of In- and Out-Degrees
|

e Each edge contributes
1 to the in-degree of some vertex and
1 to the out-degree of some other vertex.

e Sum of in-degrees = sum of out-degrees = e,
where e Is the number of edges Iin the digraph.
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Complete Undirected Graphs )

e A complete undirected graph has n(n-1)/2 edges (i.e., all
possible edges) and is denoted by K,

> & bw b

m — 1 I — =

e \What would a complete undirected graph look like when
n=5? When n=67
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Graph terminology oot

¢
I

e Adjacent nodes: two nodes are adjacent if they are
connected by an edge

@ 5is adjacentto 7
/C: 7 is adjacent from 5

e Path: a sequence of vertices that connect two nodes In
a graph

e Complete graph: a graph in which every vertex is
directly connected to every other vertex

10
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Graph terminology (cont.) = YHD

e \What Is the number of edges Iin a complete directed
graph with N vertices?

N * (N-1)

(a) Complete directed graph.
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Graph terminology (cont) = YHD

e \What is the number of edges in a complete undirected
graph with N vertices?

N * (N-1) / 2

L M

(b) Complete undirected graph.
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Shortest Paths w UHD

Single source/All destinations:

= Problem: given a directed graph G = (V, £), a length function
lengtii, )), lengti(/, j) 0O, for the edges of G, and a source
vertex v.

= Need to solve: determine a shortest path from v to each of the
remaining vertices of G.

/\

45
path length v 50 V) 10
1) vO v2 10
2)VOv2v3 25 2(0 1>o /5/20[ %o
3)vOv2v3vl 45 @ 15 @ 3 3

4) vO v4 45

Department of Computer Science UHD 13



Shortest Paths w UHD

X Weighted graph: a graph in which each edge carries a value.

(a
) Step 2. The path 0-4-2 is

shorter than 0-2

Step 3. The path 0—-4-2-1is
shorter than 0-1
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Shortest Paths »f 'UHD

Step 3 continued. The path 0-4-2-3 is
shorter than 0-3

d
() Step 4. The path 0-4-2-3 is

shorter than
0-4-2-1-3
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Graph Connectivity

* An undirected graph Is said to be connected if
there I1s a path between every pair of nodes.
Otherwise, the graph is disconnected

 Informally, an undirected graph is connected if it
hangs in one piece

LT

Disconnected Connected
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Graph Traversal Techniques

* The previous connectivity problem, as well
as many other graph problems, can be
solved using graph traversal techniques

 There are two standard graph traversal
techniques:
— Depth-First Search (DFS)
— Breadth-First Search (BFS)
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Graph Traversal (Contd.) @ UHD

* In both DFS and BFS, the nodes of the undirected
graph are visited in a systematic manner so that

every node Is visited exactly one.
* Both BFS and DFS give rise to a tree:

0 When a node x 1s visited, 1t is labeled as visited,
and 1t I1s added to the tree

o0 If the traversal got to node x from node vy, y Is
viewed as the parent of x, and x a child of y
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Depth-First Search S UHD

« A depth-first search (DFS)

R explores a path all the way to a
a leaf before backtracking and
exploring another path
« For example, after searching A,
then B, then D, the search

backtracks and tries another
path from B

] * Node are explored in the order

ABDEHLMNIOPCEF
GJKQ

A N will be found before J

19
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Iterative DFS Algorithm

Iterative DFS Algorithm

The iterative algorithm uses a stack to replace the recursive calls

Iiterative DFS(Vertex V)
mark vvisited
make an empty Stack S
push all vertices adjacent to v onto S
while S is not empty do
Vertex wis pop off S
for all Vertex vadjacent to wdo
If ¢/1s not visited then
mark v visited
push vonto S
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Recursive DFS Algorithm

Algorithm DFS(graph G, Vertex V)
// Recursive algorithm

for all edges e in G.incidentEdges(V) do
If edge elis unexplored then

w= G.opposite(V, e
If vertex wis unexplored then
label e as discovery edge
recursively call DFS(G, w)
else
label e a backedge
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Walk-Through

Visited Array

3

Task: Conduct a depth-first search of the
graph starting with node D

T O MM T O |
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Walk-Through

3

The order nodes are visited:
D

Visited Array
A

T O MM T O |

Visit D
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Walk-Through

Visited Array
A
ong \ :
C
D|a

o @
D F
G

H D

The order nodes are visited: _ _
Consider nodes adjacent to D,

D decide to visit C first (Rule:
visit adjacent nodes in
alphabetical order)



Walk-Through

Visited Array
A
BN e
Cla
D|a
&
«— F
G
H
The order nodes are visited: ..
Visit C

D, C




Walk-Through

Visited Array
A
ong \ :
Cla
D|a
o @
D F
G C
H D

The order nodes are visited: _
No nodes adjacent to C; cannot

D, C continue =» backtrack, i.e.,
pop stack and restore
previous state



Walk-Through

Visited Array

A
B S0 e

Cla

D|a
o @
D F
G

H D

The order nodes are visited: ) o
Back to DT C has been visited,

D, C decide to visit E next
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Walk-Through

Visited Array
A
B S0 e
Cla
D|a
D F
G E
H D

The order nodes are visited: ) o
Back to DT C has been visited,

D,CE decide to visit E next
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Walk-Through

3

The order nodes are visited:
D,C E

Visited Array

A

B

Cla

Dla

Ela

F

G E
H D

Only G is adjacent to E
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Walk-Through

3

The order nodes are visited:
D,CEG

Visited Array
A
B
Cla
Dla
Ela
= G
G|a E
H D
Visit G
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Walk-Through

Visited Array
A
ong \ :
Cla
D|a
FE— . G
Gla E
H D

The order nodes are visited: _
Nodes D and H are adjacent to

D,CEG G. D has already been
visited. Decide to visit H.



Walk-Through

3

The order nodes are visited:
D,CE G H

Visited Array
A

Qan

an

QMM O|IO |
Qn

an

T
an

Visit H

O m O I
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Walk-Through

Visited Array
A

Qan

an

-

P
2,

QMM O|IO |
Qn

Qan

O m O I

H

an

The order nodes are visited: _
Nodes A and B are adjacent to F.

D,CEGH Decide to visit A next.
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Walk-Through

3

The order nodes are visited:
D,CE G HA

Visited Array
Ala

Qan

an

QMM O|IO |
Qn

Qan

T
an

Visit A

O m ® I >
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Walk-Through

Visited Array
Ala

Qan

an

-

Py
2,

QMM O|IO |
Qn

an

O m ® I >

H

an

The order nodes are visited: _ _
Only Node B is adjacent to A.

D,C EGHA Decide to visit B next.



Walk-Through

3

The order nodes are visited:
D,CE G HA B

Visited Array
A

Qan

an

Qan

an

QMM O|IO |
Qn

Qan

T
an

Visit B

O m G I >» W
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Walk-Through

Visited Array
A

Qan

an

Qan

an

-

P e
2,

QMM O|IO |
Qn

Qan

O m ® I >

H

an

The order nodes are visited: o _
No unvisited nodes adjacent to

D,C,E,G,HAB B. Backtrack (pop the stack).
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Walk-Through

Visited Array
A

Qan

an

Qan

an

-

P e
2,

QMM O|IO |
Qn

Qan

O m O I

H

an

The order nodes are visited: o _
No unvisited nodes adjacent to

D,C,E,G,HAB A. Backtrack (pop the stack).
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Walk-Through

-

P e
2,

The order nodes are visited:
D,CE G HA B

Visited Array
A

Qan

an

Qan

an

QMM O|IO |
Qn

Qan

H

an

G
E
D

No unvisited nodes adjacent to

H. Backtrack (pop the

stack).
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Walk-Through

P e
2,

Visited Array
A

Qan

an

Qan

an

-

QMM O|IO |
Qn

an

E
D

H

an

The order nodes are visited: o _
No unvisited nodes adjacent to

D,C,E, G HAB G. Backtrack (pop the
stack).
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Walk-Through

Visited Array
A

Qan

an

Qan

an

P e
2,

-

QMM O|IO |
Qn

Qan

H D

an

The order nodes are visited: o _
No unvisited nodes adjacent to

D,C,E,G,HAB E. Backtrack (pop the stack).
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Walk-Through

-

P e
2,

The order nodes are visited:
D,CE G HA B

Visited Array

A

Qan

an

Qan

an

an

QMM O|IO |

Qan

H

an

D

F is unvisited and is adjacent to

D. Decide to visit F next.
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Walk-Through

P

The order nodes are visited:
D,CE G HAB,F

Visited Array
A

Qan

an

Qan

an

an

QMM O|IO |
Qn

Qan

T
an

Visit F
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Walk-Through

-

P e
2,

The order nodes are visited:
D,CE G HAB,F

Visited Array

A

Qan

an

Qan

an

an

an

QMM O|IO |

Qan

H

an

D

No unvisited nodes adjacent to

F. Backtrack.
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Walk-Through

-

P e
2,

The order nodes are visited:
D,CE G HAB,F

Visited Array
A

Qan

an

Qan

an

an

QMM O|IO |
Qn

Qan

H

an

No unvisited nodes adjacent to

D. Backtrack.
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Walk-Through

Visited Array
A

Qan

an

Qan

an

-

P e
2,

an

QMM O|IO |
Qn

Qan

H|a

The order nodes are visited: _ _
Stack is empty. Depth-first

D,C,E,G HAB,F traversal is done.



DN
\

'« UHD

\ ::—;_»: /' UNIVERSITY OF HUMAN DEVELOPMENT

Thank you
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