Advanced Data Structures
and Algorithms

Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology
Computer Science Department

2015 - 2016

Department of Computer Science 1
UHD

What this Lecture is about:

;ORI © I O TR O TR S S S O N O S o1

Graph Related Concepts
Vertex Degree

In-Degree of a Vertex
Out-Degree of a Vertex

Sum of In- and Out-DegreesG
Complete Undirected Graphs
Graph terminology

Shortest Paths

Depth-First Search (DFS)
Depth-First Search algorithm

Department of Computer Science UHD

Definition of Some Graph w UHD
Related Concepts

« Let G be adirected graph

— The /ndegree of a node x in G Is the number of
edges coming to x

— The outdegree of x Is the number of edges
leaving X.
» Let G be an undirected graph

— The degree of a node x Is the number of edges
that have x as one of their end nodes

— The neighbors of x are the nodes adjacent to X

Department of Computer Science UHD 3

Vertex Degree

 The degree of vertex /is the no. of edges incident on vertex .
e.g., degree(2) = 2, degree(5) = 3, degree(3) =1
Unlike trees, a graph can have cycles:

Department of Computer Science UHD 4

2 UHD

Sum of Vertex Degrees

Sum of degrees = Ze (where eis the number of edges)

Department of Computer Science UHD 5

W UHD

In-Degree of a Vertex

* In-degree of vertex /7 is the number of edges incident to /7 (i.e.,
the number of incoming edges).

e.g., indegree(2) = 1, indegree(8) =0

Department of Computer Science UHD 6

W UHD

Out-Degree of a Vertex

» Qut-degree of vertex /is the number of edges incident from /
(.e., the number of outgoing edges).

* e.g., outdegree(2) = 1, outdegree(8) = 2

Department of Computer Science UHD 7

Sum of In- and Out-Degrees
|

e Each edge contributes
1 to the in-degree of some vertex and
1 to the out-degree of some other vertex.

e Sum of in-degrees = sum of out-degrees = e,
where e Is the number of edges Iin the digraph.

Department of Computer Science UHD 8

P

. = UHD
Complete Undirected Graphs)

e A complete undirected graph has n(n-1)/2 edges (i.e., all
possible edges) and is denoted by K,

> & bw b

m — 1 I — =

e \What would a complete undirected graph look like when
n=5? When n=67

Department of Computer Science UHD 9

< UHD

Graph terminology oot

¢
I

e Adjacent nodes: two nodes are adjacent if they are
connected by an edge

@ 5is adjacentto 7
/C: 7 is adjacent from 5

e Path: a sequence of vertices that connect two nodes In
a graph

e Complete graph: a graph in which every vertex is
directly connected to every other vertex

10

Department of Computer Science UHD

Graph terminology (cont.) = YHD

e \What Is the number of edges Iin a complete directed
graph with N vertices?

N * (N-1)

(a) Complete directed graph.

Department of Computer Science UHD 11

Graph terminology (cont) = YHD

e \What is the number of edges in a complete undirected
graph with N vertices?

N * (N-1) / 2

L M

(b) Complete undirected graph.

Department of Computer Science UHD 12

e

Shortest Paths w UHD

Single source/All destinations:

= Problem: given a directed graph G = (V, £), a length function
lengtii,)), lengti(/, j) 0O, for the edges of G, and a source
vertex v.

= Need to solve: determine a shortest path from v to each of the
remaining vertices of G.

/\

45
path length v 50 V) 10
1) vO v2 10
2)VOv2v3 25 2(0 1>o /5/20[%o
3)vOv2v3vl 45 @ 15 @ 3 3

4) vO v4 45

Department of Computer Science UHD 13

Shortest Paths w UHD

X Weighted graph: a graph in which each edge carries a value.

(a
) Step 2. The path 0-4-2 is

shorter than 0-2

Step 3. The path 0—-4-2-1is
shorter than 0-1

14
Department of Computer Science UHD

Shortest Paths »f 'UHD

Step 3 continued. The path 0-4-2-3 is
shorter than 0-3

d
() Step 4. The path 0-4-2-3 is

shorter than
0-4-2-1-3

Department of Computer Science UHD 15

Graph Connectivity

* An undirected graph Is said to be connected if
there I1s a path between every pair of nodes.
Otherwise, the graph is disconnected

 Informally, an undirected graph is connected if it
hangs in one piece

LT

Disconnected Connected

16
Department of Computer Science UHD

Graph Traversal Techniques

* The previous connectivity problem, as well
as many other graph problems, can be
solved using graph traversal techniques

 There are two standard graph traversal
techniques:
— Depth-First Search (DFS)
— Breadth-First Search (BFS)

Department of Computer Science UHD

17

Graph Traversal (Contd.) @ UHD

* In both DFS and BFS, the nodes of the undirected
graph are visited in a systematic manner so that

every node Is visited exactly one.
* Both BFS and DFS give rise to a tree:

0 When a node x 1s visited, 1t is labeled as visited,
and 1t I1s added to the tree

o0 If the traversal got to node x from node vy, y Is
viewed as the parent of x, and x a child of y

Department of Computer Science UHD 18

Depth-First Search S UHD

« A depth-first search (DFS)

R explores a path all the way to a
a leaf before backtracking and
exploring another path
« For example, after searching A,
then B, then D, the search

backtracks and tries another
path from B

] * Node are explored in the order

ABDEHLMNIOPCEF
GJKQ

A N will be found before J

19
Department of Computer Science UHD

Iterative DFS Algorithm

Iterative DFS Algorithm

The iterative algorithm uses a stack to replace the recursive calls

Iiterative DFS(Vertex V)
mark vvisited
make an empty Stack S
push all vertices adjacent to v onto S
while S is not empty do
Vertex wis pop off S
for all Vertex vadjacent to wdo
If ¢/1s not visited then
mark v visited
push vonto S

Department of Computer Science UHD

20

Recursive DFS Algorithm

Algorithm DFS(graph G, Vertex V)
// Recursive algorithm

for all edges e in G.incidentEdges(V) do
If edge elis unexplored then

w= G.opposite(V, e
If vertex wis unexplored then
label e as discovery edge
recursively call DFS(G, w)
else
label e a backedge

Department of Computer Science UHD

21

Walk-Through

Visited Array

3

Task: Conduct a depth-first search of the
graph starting with node D

T O MM T O |

22

Walk-Through

3

The order nodes are visited:
D

Visited Array
A

T O MM T O |

Visit D

23

Walk-Through

Visited Array
A
ong \ :
C
D|a

o @
D F
G

H D

The order nodes are visited: _ _
Consider nodes adjacent to D,

D decide to visit C first (Rule:
visit adjacent nodes in
alphabetical order)

Walk-Through

Visited Array
A
BN e
Cla
D|a
&
«— F
G
H
The order nodes are visited: ..
Visit C

D, C

Walk-Through

Visited Array
A
ong \ :
Cla
D|a
o @
D F
G C
H D

The order nodes are visited: _
No nodes adjacent to C; cannot

D, C continue =» backtrack, i.e.,
pop stack and restore
previous state

Walk-Through

Visited Array

A
B S0 e

Cla

D|a
o @
D F
G

H D

The order nodes are visited:) o
Back to DT C has been visited,

D, C decide to visit E next

27

Walk-Through

Visited Array
A
B S0 e
Cla
D|a
D F
G E
H D

The order nodes are visited:) o
Back to DT C has been visited,

D,CE decide to visit E next

28

Walk-Through

3

The order nodes are visited:
D,C E

Visited Array

A

B

Cla

Dla

Ela

F

G E
H D

Only G is adjacent to E

29

Walk-Through

3

The order nodes are visited:
D,CEG

Visited Array
A
B
Cla
Dla
Ela
= G
G|a E
H D
Visit G

30

Walk-Through

Visited Array
A
ong \ :
Cla
D|a
FE— . G
Gla E
H D

The order nodes are visited: _
Nodes D and H are adjacent to

D,CEG G. D has already been
visited. Decide to visit H.

Walk-Through

3

The order nodes are visited:
D,CE G H

Visited Array
A

Qan

an

QMM O|IO |
Qn

an

T
an

Visit H

O m O I

32

Walk-Through

Visited Array
A

Qan

an

-

P
2,

QMM O|IO |
Qn

Qan

O m O I

H

an

The order nodes are visited: _
Nodes A and B are adjacent to F.

D,CEGH Decide to visit A next.

33

Walk-Through

3

The order nodes are visited:
D,CE G HA

Visited Array
Ala

Qan

an

QMM O|IO |
Qn

Qan

T
an

Visit A

O m ® I >

34

Walk-Through

Visited Array
Ala

Qan

an

-

Py
2,

QMM O|IO |
Qn

an

O m ® I >

H

an

The order nodes are visited: _ _
Only Node B is adjacent to A.

D,C EGHA Decide to visit B next.

Walk-Through

3

The order nodes are visited:
D,CE G HA B

Visited Array
A

Qan

an

Qan

an

QMM O|IO |
Qn

Qan

T
an

Visit B

O m G I >» W

36

Walk-Through

Visited Array
A

Qan

an

Qan

an

-

P e
2,

QMM O|IO |
Qn

Qan

O m ® I >

H

an

The order nodes are visited: o _
No unvisited nodes adjacent to

D,C,E,G,HAB B. Backtrack (pop the stack).

37

Walk-Through

Visited Array
A

Qan

an

Qan

an

-

P e
2,

QMM O|IO |
Qn

Qan

O m O I

H

an

The order nodes are visited: o _
No unvisited nodes adjacent to

D,C,E,G,HAB A. Backtrack (pop the stack).

38

Walk-Through

-

P e
2,

The order nodes are visited:
D,CE G HA B

Visited Array
A

Qan

an

Qan

an

QMM O|IO |
Qn

Qan

H

an

G
E
D

No unvisited nodes adjacent to

H. Backtrack (pop the

stack).

39

Walk-Through

P e
2,

Visited Array
A

Qan

an

Qan

an

-

QMM O|IO |
Qn

an

E
D

H

an

The order nodes are visited: o _
No unvisited nodes adjacent to

D,C,E, G HAB G. Backtrack (pop the
stack).

40

Walk-Through

Visited Array
A

Qan

an

Qan

an

P e
2,

-

QMM O|IO |
Qn

Qan

H D

an

The order nodes are visited: o _
No unvisited nodes adjacent to

D,C,E,G,HAB E. Backtrack (pop the stack).

41

Walk-Through

-

P e
2,

The order nodes are visited:
D,CE G HA B

Visited Array

A

Qan

an

Qan

an

an

QMM O|IO |

Qan

H

an

D

F is unvisited and is adjacent to

D. Decide to visit F next.

42

Walk-Through

P

The order nodes are visited:
D,CE G HAB,F

Visited Array
A

Qan

an

Qan

an

an

QMM O|IO |
Qn

Qan

T
an

Visit F

43

Walk-Through

-

P e
2,

The order nodes are visited:
D,CE G HAB,F

Visited Array

A

Qan

an

Qan

an

an

an

QMM O|IO |

Qan

H

an

D

No unvisited nodes adjacent to

F. Backtrack.

44

Walk-Through

-

P e
2,

The order nodes are visited:
D,CE G HAB,F

Visited Array
A

Qan

an

Qan

an

an

QMM O|IO |
Qn

Qan

H

an

No unvisited nodes adjacent to

D. Backtrack.

45

Walk-Through

Visited Array
A

Qan

an

Qan

an

-

P e
2,

an

QMM O|IO |
Qn

Qan

H|a

The order nodes are visited: _ _
Stack is empty. Depth-first

D,C,E,G HAB,F traversal is done.

DN
\

'« UHD

\ ::—;_»: /' UNIVERSITY OF HUMAN DEVELOPMENT

Thank you

277

Department of Computer Science UHD 47

