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☼ Graph Related Concepts

☼ Vertex Degree

☼ In-Degree of a Vertex

☼ Out-Degree of a Vertex

☼ Sum of In- and Out-DegreesG

☼ Complete Undirected Graphs

☼ Graph terminology 

☼ Shortest Paths

☼ Depth-First Search (DFS)

☼ Depth-First Search  algorithm
 Topological Sort (Ch. 9.1-9.2)

What this Lecture is about:
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Definition of Some Graph 

Related Concepts

• Let G be a directed graph

– The indegree of a node x in G is the number of 
edges coming to x

– The outdegree of x is the number of edges 
leaving x.

• Let G be an undirected graph

– The degree of a node x is the number of edges 
that have x as one of their end nodes

– The neighbors of x are the nodes adjacent to x



Vertex Degree

• The degree of vertex i is the no. of edges incident on vertex i.

e.g., degree(2) = 2, degree(5) = 3, degree(3) = 1

4 Department of Computer Science UHD 4

Unlike trees, a graph can have cycles:



Sum of Vertex Degrees

Sum of degrees = 2e (where e is the number of edges)
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In-Degree of a Vertex

• In-degree of vertex i is the number of edges incident to i (i.e.,

the number of incoming edges).

e.g., indegree(2) = 1, indegree(8) = 0
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Out-Degree of a Vertex

• Out-degree of vertex i is the number of edges incident from i
(i.e., the number of outgoing edges). 

• e.g., outdegree(2) = 1, outdegree(8) = 2
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Sum of In- and Out-Degrees

 Each edge contributes

1 to the in-degree of some vertex and

1 to the out-degree of some other vertex.

 Sum of in-degrees = sum of out-degrees = e,

where e is the number of edges in the digraph.
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Complete Undirected Graphs

 A complete undirected graph has n(n-1)/2 edges (i.e., all 

possible edges) and is denoted by Kn

 What would a complete undirected graph look like when 

n=5?  When n=6?
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Graph terminology

 Adjacent nodes: two nodes are adjacent if they are

connected by an edge

 Path: a sequence of vertices that connect two nodes in

a graph

 Complete graph: a graph in which every vertex is

directly connected to every other vertex
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5 is adjacent to 7

7 is adjacent from 5



Graph terminology (cont.)

 What is the number of edges in a complete directed 

graph with N vertices?

N * (N-1)
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Graph terminology (cont.)

 What is the number of edges in a complete undirected

graph with N vertices?

N * (N-1) / 2
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Shortest Paths

Single source/All destinations: 

 Problem: given a directed graph G = (V, E), a length function

length(i, j), length(i, j)  0, for the edges of G, and a source

vertex v.

 Need to solve: determine a shortest path from v to each of the

remaining vertices of G.

V0 V4V1

V5V3V2

50              10

20  10  15  20    35       30

15                 3

45

path length

1) v0 v2             10

2) v0 v2 v3        25

3) v0 v2 v3 v1   45

4) v0 v4             45



Shortest Paths

 Weighted graph: a graph in which each edge carries a value.
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Shortest Paths
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Graph Connectivity

• An undirected graph is said to be connected if
there is a path between every pair of nodes.
Otherwise, the graph is disconnected

• Informally, an undirected graph is connected if it
hangs in one piece

Disconnected Connected
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Graph Traversal Techniques

• The previous connectivity problem, as well

as many other graph problems, can be

solved using graph traversal techniques

• There are two standard graph traversal

techniques:

– Depth-First Search (DFS)

– Breadth-First Search (BFS)
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Graph Traversal (Contd.)

• In both DFS and BFS, the nodes of the undirected
graph are visited in a systematic manner so that
every node is visited exactly one.

• Both BFS and DFS give rise to a tree:

o When a node x is visited, it is labeled as visited,
and it is added to the tree

o If the traversal got to node x from node y, y is
viewed as the parent of x, and x a child of y
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Depth-First Search 

• A depth-first search (DFS) 

explores a path all the way to a 

leaf before backtracking and 

exploring another path

• For example, after searching A, 

then B, then D, the search 

backtracks and tries another 

path from B

• Node are explored in the order 
A B D E H L M N I O P C F 
G J K Q

• N will be found before JL M N O P

G

Q

H JI K

FED

B C

A
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Iterative DFS Algorithm

The iterative algorithm uses a stack to replace the recursive calls

iterative DFS(Vertex v)

mark v visited

make an empty Stack S

push all vertices adjacent to v onto S

while S is not empty do

Vertex w is pop off S

for all Vertex u adjacent to w do

if u is not visited then

mark u visited

push u onto S

Iterative DFS Algorithm
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Algorithm DFS(graph G, Vertex v)

// Recursive algorithm

for all edges e in G.incidentEdges(v) do

if edge e is unexplored then

w = G.opposite(v, e)

if vertex w is unexplored then

label e as discovery edge

recursively call DFS(G, w)

else

label e a back edge 

Recursive DFS Algorithm



A

H
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G

Walk-Through

Visited Array

A

B

C

D

E

F

G

H

Task: Conduct a depth-first search of the 

graph starting with node D
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C

D √

E

F

G

H

Visit D

D

The order nodes are visited: 

D 
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C

D √

E

F

G

H

Consider nodes adjacent to D, 

decide to visit C first (Rule: 

visit adjacent nodes in 

alphabetical order)

D

The order nodes are visited: 

D 
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E

F

G

H

Visit C

C

D

The order nodes are visited: 

D, C 
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E

F

G

H

No nodes adjacent to C; cannot 

continue  backtrack, i.e., 

pop stack and restore 

previous state

C

D

The order nodes are visited: 

D, C 
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Walk-Through

Visited Array
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B
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E

F

G

H

Back to D – C has been visited, 

decide to visit E next

D

The order nodes are visited: 

D, C 
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Walk-Through

Visited Array

A

B

C √

D √

E √

F

G

H

Back to D – C has been visited, 

decide to visit E next

E

D

The order nodes are visited: 

D, C, E 
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Walk-Through

Visited Array

A

B

C √

D √

E √

F

G

H

Only G is adjacent to E

E

D

The order nodes are visited: 

D, C, E 
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G √

H

Visit G

G

E

D

The order nodes are visited: 

D, C, E, G
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G √

H

Nodes D and H are adjacent to 

G.  D has already been 

visited.  Decide to visit H.

G

E

D

The order nodes are visited: 

D, C, E, G
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G √

H √

Visit H

H

G

E

D

The order nodes are visited: 

D, C, E, G, H
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G √

H √

Nodes A and B are adjacent to F.  

Decide to visit A next.

H

G

E

D

The order nodes are visited: 

D, C, E, G, H
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A
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B

F
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D

C

G

Walk-Through

Visited Array

A √

B

C √

D √

E √

F

G √

H √

Visit A

A

H

G

E

D

The order nodes are visited: 

D, C, E, G, H, A
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B
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D

C

G

Walk-Through

Visited Array

A √

B

C √

D √

E √

F

G √

H √

Only Node B is adjacent to A.  

Decide to visit B next.

A

H

G

E

D

The order nodes are visited: 

D, C, E, G, H, A
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

Visit B

B

A

H

G

E

D

The order nodes are visited: 

D, C, E, G, H, A, B
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F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to 

B.  Backtrack (pop the stack).

A

H

G

E

D

The order nodes are visited: 

D, C, E, G, H, A, B
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to 

A.  Backtrack (pop the stack).

H

G

E

D

The order nodes are visited: 

D, C, E, G, H, A, B
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A

H

B

F
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D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to 

H.  Backtrack (pop the 

stack).

G

E

D

The order nodes are visited: 

D, C, E, G, H, A, B
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A
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F
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D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to 

G.  Backtrack (pop the 

stack).

E

D

The order nodes are visited: 

D, C, E, G, H, A, B
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to 

E.  Backtrack (pop the stack).

D

The order nodes are visited: 

D, C, E, G, H, A, B
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

F is unvisited and is adjacent to 

D. Decide to visit F next.

D

The order nodes are visited: 

D, C, E, G, H, A, B
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F √

G √

H √

Visit F

F

D

The order nodes are visited: 

D, C, E, G, H, A, B, F
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A
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F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F √

G √

H √

No unvisited nodes adjacent to 

F.  Backtrack.

D

The order nodes are visited: 

D, C, E, G, H, A, B, F
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A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F √

G √

H √

No unvisited nodes adjacent to 

D.  Backtrack.

The order nodes are visited: 

D, C, E, G, H, A, B, F

45



A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F √

G √

H √

Stack is empty.  Depth-first 

traversal is done.

The order nodes are visited: 

D, C, E, G, H, A, B, F
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Thank you

??? 


