
Department of Computer Science

UHD
1

Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology

Computer Science Department

2015 – 2016

Advanced Data Structures
and Algorithms

Department of Computer Science UHD 2

☼ Graph Related Concepts

☼ Vertex Degree

☼ In-Degree of a Vertex

☼ Out-Degree of a Vertex

☼ Sum of In- and Out-DegreesG

☼ Complete Undirected Graphs

☼ Graph terminology

☼ Shortest Paths

☼ Depth-First Search (DFS)

☼ Depth-First Search algorithm
 Topological Sort (Ch. 9.1-9.2)

What this Lecture is about:

1

Department of Computer Science UHD 3

Definition of Some Graph

Related Concepts

• Let G be a directed graph

– The indegree of a node x in G is the number of
edges coming to x

– The outdegree of x is the number of edges
leaving x.

• Let G be an undirected graph

– The degree of a node x is the number of edges
that have x as one of their end nodes

– The neighbors of x are the nodes adjacent to x

Vertex Degree

• The degree of vertex i is the no. of edges incident on vertex i.

e.g., degree(2) = 2, degree(5) = 3, degree(3) = 1

4 Department of Computer Science UHD 4

Unlike trees, a graph can have cycles:

Sum of Vertex Degrees

Sum of degrees = 2e (where e is the number of edges)

Department of Computer Science UHD 5

In-Degree of a Vertex

• In-degree of vertex i is the number of edges incident to i (i.e.,

the number of incoming edges).

e.g., indegree(2) = 1, indegree(8) = 0

Department of Computer Science UHD 6

Out-Degree of a Vertex

• Out-degree of vertex i is the number of edges incident from i
(i.e., the number of outgoing edges).

• e.g., outdegree(2) = 1, outdegree(8) = 2

Department of Computer Science UHD 7

Sum of In- and Out-Degrees

 Each edge contributes

1 to the in-degree of some vertex and

1 to the out-degree of some other vertex.

 Sum of in-degrees = sum of out-degrees = e,

where e is the number of edges in the digraph.

Department of Computer Science UHD 8

Complete Undirected Graphs

 A complete undirected graph has n(n-1)/2 edges (i.e., all

possible edges) and is denoted by Kn

 What would a complete undirected graph look like when

n=5? When n=6?

Department of Computer Science UHD 9

Graph terminology

 Adjacent nodes: two nodes are adjacent if they are

connected by an edge

 Path: a sequence of vertices that connect two nodes in

a graph

 Complete graph: a graph in which every vertex is

directly connected to every other vertex

Department of Computer Science UHD
10

5 is adjacent to 7

7 is adjacent from 5

Graph terminology (cont.)

 What is the number of edges in a complete directed

graph with N vertices?

N * (N-1)

Department of Computer Science UHD 11

Graph terminology (cont.)

 What is the number of edges in a complete undirected

graph with N vertices?

N * (N-1) / 2

Department of Computer Science UHD 12

Department of Computer Science UHD 13

Shortest Paths

Single source/All destinations:

 Problem: given a directed graph G = (V, E), a length function

length(i, j), length(i, j) 0, for the edges of G, and a source

vertex v.

 Need to solve: determine a shortest path from v to each of the

remaining vertices of G.

V0 V4V1

V5V3V2

50 10

20 10 15 20 35 30

15 3

45

path length

1) v0 v2 10

2) v0 v2 v3 25

3) v0 v2 v3 v1 45

4) v0 v4 45

Shortest Paths

 Weighted graph: a graph in which each edge carries a value.

14
Department of Computer Science UHD

Shortest Paths

15Department of Computer Science UHD

Department of Computer Science UHD
16

Graph Connectivity

• An undirected graph is said to be connected if
there is a path between every pair of nodes.
Otherwise, the graph is disconnected

• Informally, an undirected graph is connected if it
hangs in one piece

Disconnected Connected

Department of Computer Science UHD 17

Graph Traversal Techniques

• The previous connectivity problem, as well

as many other graph problems, can be

solved using graph traversal techniques

• There are two standard graph traversal

techniques:

– Depth-First Search (DFS)

– Breadth-First Search (BFS)

Department of Computer Science UHD 18

Graph Traversal (Contd.)

• In both DFS and BFS, the nodes of the undirected
graph are visited in a systematic manner so that
every node is visited exactly one.

• Both BFS and DFS give rise to a tree:

o When a node x is visited, it is labeled as visited,
and it is added to the tree

o If the traversal got to node x from node y, y is
viewed as the parent of x, and x a child of y

Department of Computer Science UHD
19

Depth-First Search

• A depth-first search (DFS)

explores a path all the way to a

leaf before backtracking and

exploring another path

• For example, after searching A,

then B, then D, the search

backtracks and tries another

path from B

• Node are explored in the order
A B D E H L M N I O P C F
G J K Q

• N will be found before JL M N O P

G

Q

H JI K

FED

B C

A

Department of Computer Science UHD
20

Iterative DFS Algorithm

The iterative algorithm uses a stack to replace the recursive calls

iterative DFS(Vertex v)

mark v visited

make an empty Stack S

push all vertices adjacent to v onto S

while S is not empty do

Vertex w is pop off S

for all Vertex u adjacent to w do

if u is not visited then

mark u visited

push u onto S

Iterative DFS Algorithm

Department of Computer Science UHD

21

Algorithm DFS(graph G, Vertex v)

// Recursive algorithm

for all edges e in G.incidentEdges(v) do

if edge e is unexplored then

w = G.opposite(v, e)

if vertex w is unexplored then

label e as discovery edge

recursively call DFS(G, w)

else

label e a back edge

Recursive DFS Algorithm

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C

D

E

F

G

H

Task: Conduct a depth-first search of the

graph starting with node D
22

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C

D √

E

F

G

H

Visit D

D

The order nodes are visited:

D

23

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C

D √

E

F

G

H

Consider nodes adjacent to D,

decide to visit C first (Rule:

visit adjacent nodes in

alphabetical order)

D

The order nodes are visited:

D

24

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E

F

G

H

Visit C

C

D

The order nodes are visited:

D, C

25

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E

F

G

H

No nodes adjacent to C; cannot

continue backtrack, i.e.,

pop stack and restore

previous state

C

D

The order nodes are visited:

D, C

26

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E

F

G

H

Back to D – C has been visited,

decide to visit E next

D

The order nodes are visited:

D, C

27

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G

H

Back to D – C has been visited,

decide to visit E next

E

D

The order nodes are visited:

D, C, E

28

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G

H

Only G is adjacent to E

E

D

The order nodes are visited:

D, C, E

29

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G √

H

Visit G

G

E

D

The order nodes are visited:

D, C, E, G

30

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G √

H

Nodes D and H are adjacent to

G. D has already been

visited. Decide to visit H.

G

E

D

The order nodes are visited:

D, C, E, G

31

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G √

H √

Visit H

H

G

E

D

The order nodes are visited:

D, C, E, G, H

32

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A

B

C √

D √

E √

F

G √

H √

Nodes A and B are adjacent to F.

Decide to visit A next.

H

G

E

D

The order nodes are visited:

D, C, E, G, H

33

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B

C √

D √

E √

F

G √

H √

Visit A

A

H

G

E

D

The order nodes are visited:

D, C, E, G, H, A

34

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B

C √

D √

E √

F

G √

H √

Only Node B is adjacent to A.

Decide to visit B next.

A

H

G

E

D

The order nodes are visited:

D, C, E, G, H, A

35

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

Visit B

B

A

H

G

E

D

The order nodes are visited:

D, C, E, G, H, A, B

36

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to

B. Backtrack (pop the stack).

A

H

G

E

D

The order nodes are visited:

D, C, E, G, H, A, B

37

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to

A. Backtrack (pop the stack).

H

G

E

D

The order nodes are visited:

D, C, E, G, H, A, B

38

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to

H. Backtrack (pop the

stack).

G

E

D

The order nodes are visited:

D, C, E, G, H, A, B

39

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to

G. Backtrack (pop the

stack).

E

D

The order nodes are visited:

D, C, E, G, H, A, B

40

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

No unvisited nodes adjacent to

E. Backtrack (pop the stack).

D

The order nodes are visited:

D, C, E, G, H, A, B

41

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F

G √

H √

F is unvisited and is adjacent to

D. Decide to visit F next.

D

The order nodes are visited:

D, C, E, G, H, A, B

42

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F √

G √

H √

Visit F

F

D

The order nodes are visited:

D, C, E, G, H, A, B, F

43

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F √

G √

H √

No unvisited nodes adjacent to

F. Backtrack.

D

The order nodes are visited:

D, C, E, G, H, A, B, F

44

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F √

G √

H √

No unvisited nodes adjacent to

D. Backtrack.

The order nodes are visited:

D, C, E, G, H, A, B, F

45

A

H

B

F

E

D

C

G

Walk-Through

Visited Array

A √

B √

C √

D √

E √

F √

G √

H √

Stack is empty. Depth-first

traversal is done.

The order nodes are visited:

D, C, E, G, H, A, B, F

46

Department of Computer Science UHD 47

Thank you

???

