Advanced Data Structures and Algorithms

Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology Computer Science Department

$$
2015-2016
$$

What this Lecture is about：

－
－
家
察
安
宛
为
果
必
为

Graph Related Concepts
Vertex Degree
In－Degree of a Vertex
Out－Degree of a Vertex
Sum of In－and Out－DegreesG
Complete Undirected Graphs
Graph terminology
Shortest Paths
Depth－First Search（DFS）
Depth－First Search algorithm

Definition of Some Graph Related Concepts

- Let G be a directed graph
- The indegree of a node x in G is the number of edges coming to x
- The outdegree of x is the number of edges leaving x .
- Let G be an undirected graph
- The degree of a node x is the number of edges that have x as one of their end nodes
- The neighbors of x are the nodes adjacent to x

Vertex Degree

- The degree of vertex i is the no. of edges incident on vertex i.
e.g., $\operatorname{degree}(2)=2, \operatorname{degree}(5)=3, \operatorname{degree}(3)=1$

Unlike trees, a graph can have cycles:

Sum of Vertex Degrees

Sum of degrees $=2 e($ where e is the number of edges $)$

In-Degree of a Vertex

- In-degree of vertex i is the number of edges incident to i (i.e., the number of incoming edges).
e.g., indegree $(2)=1$, indegree $(8)=0$

Out-Degree of a Vertex

- Out-degree of vertex i is the number of edges incident from i (i.e., the number of outgoing edges).
-e.g., outdegree(2) = 1 , outdegree $(8)=2$

Sum of In- and Out-Degrees

- Each edge contributes

1 to the in-degree of some vertex and
1 to the out-degree of some other vertex.

- Sum of in-degrees = sum of out-degrees =e, where e is the number of edges in the digraph.

Complete Undirected Graphs

- A complete undirected graph has $n(n-1) / 2$ edges (i.e., all possible edges) and is denoted by K_{n}

- What would a complete undirected graph look like when $\mathrm{n}=5$? When $\mathrm{n}=6$?

Graph terminology

- Adjacent nodes: two nodes are adjacent if they are connected by an edge

5 is adjacent to 7
7 is adjacent from 5

- Path: a sequence of vertices that connect two nodes in a graph
- Complete graph: a graph in which every vertex is directly connected to every other vertex

Graph terminology (cont.)

- What is the number of edges in a complete directed graph with N vertices?

$$
N^{*}(N-1)
$$

(a) Complete directed graph.

Graph terminology (cont.)

- What is the number of edges in a complete undirected graph with N vertices?

$$
\mathrm{N} *(\mathrm{~N}-1) / 2
$$

(b) Complete undirected graph.

Shortest Paths

Single source/All destinations:

- Problem: given a directed graph $G=(V, E)$, a length function $\operatorname{length}(i, j)$, length $(i, j) \geq 0$, for the edges of G, and a source vertex v.
- Need to solve: determine a shortest path from v to each of the remaining vertices of G.

\quad path	length
1) v 0 v 2	10
2) v 0 v 2 v 3	25
3) v 0 v 2 v 3 v 1	45
4) v 0 v 4	45

Weighted graph: a graph in which each edge carries a value.
(a)

Step 2. The path $0-4-2$ is
shorter than $0-2$
(b)

Step 3. The path $0-4-2-1$ is shorter than 0-1

Shortest Paths

(c)

Step 3 continued. The path 0-4-2-3 is shorter than 0-3
(d)

Step 4. The path $0-4-2-3$ is shorter than $0-4-2-1-3$

Graph Connectivity

- An undirected graph is said to be connected if there is a path between every pair of nodes. Otherwise, the graph is disconnected
- Informally, an undirected graph is connected if it hangs in one piece

Disconnected

Connected

Graph Traversal Techniques

- The previous connectivity problem, as well as many other graph problems, can be solved using graph traversal techniques
- There are two standard graph traversal techniques:
- Depth-First Search (DFS)
- Breadth-First Search (BFS)

Graph Traversal (Contd.)

- In both DFS and BFS, the nodes of the undirected graph are visited in a systematic manner so that every node is visited exactly one.
- Both BFS and DFS give rise to a tree:
- When a node x is visited, it is labeled as visited, and it is added to the tree
- If the traversal got to node x from node y, y is viewed as the parent of x, and x a child of y

Depth-First Search

- A depth-first search (DFS)
 explores a path all the way to a leaf before backtracking and exploring another path
- For example, after searching A, then B, then D, the search backtracks and tries another path from B
- Node are explored in the order ABDEHLMNIOPCF G J K Q
- N will be found before J

Iterative DFS Algorithm

Iterative DFS Algorithm
The iterative algorithm uses a stack to replace the recursive calls
iterative DFS(Vertex v)
mark v visited
make an empty Stack S
push all vertices adjacent to v onto S
while S is not empty do
Vertex w is pop off S
for all Vertex u adjacent to w do
if u is not visited then
mark u visited
push u onto S

Recursive DFS Algorithm

Algorithm DFS(graph G, Vertex v)
// Recursive algorithm
for all edges e in G.incidentEdges (v) do
if edge e is unexplored then

$w=\operatorname{G.opposite}(v, e)$
if vertex w is unexplored then label e as discovery edge recursively call DFS(G, w)
else
label e a backedge

Walk-Through

Visited Array

A	
B	
C	
D	
E	
F	
G	
H	

Task: Conduct a depth-first search of the graph starting with node D

Walk-Through

The order nodes are visited:
D

Visited Array

A	
B	
C	
D	$\sqrt{2}$
E	
F	
G	
H	

Visit D

Walk-Through

The order nodes are visited:
D

Visited Array

A	
B	
C	
D	$\sqrt{2}$
E	
F	
G	
H	

Consider nodes adjacent to D, decide to visit C first (Rule: visit adjacent nodes in alphabetical order)

Walk-Through

The order nodes are visited:
D, C

Visited Array

A	
B	
C	$\sqrt{2}$
D	$\sqrt{ }$
E	
F	
G	
H	

Visit C

Walk-Through

The order nodes are visited:
D, C

Visited Array

A	
B	
C	$\sqrt{2}$
D	$\sqrt{ }$
E	
F	
G	
H	

No nodes adjacent to C; cannot continue \rightarrow backtrack, i.e., pop stack and restore previous state

Walk-Through

The order nodes are visited:
D, C

Visited Array

A	
B	
C	\mathfrak{V}
D	$\sqrt{ }$
E	
F	
G	
H	

Back to D-C has been visited, decide to visit E next

Walk-Through

The order nodes are visited:
D, C, E

Visited Array

A	
B	
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	
H	

E
 D

Back to D-C has been visited, decide to visit E next

Walk-Through

The order nodes are visited:
D, C, E

Visited Array

A	
B	
C	$\sqrt{2}$
D	$\sqrt{ }$
E	\mathfrak{V}
F	
G	
H	

Only G is adjacent to \mathbf{E}

Walk-Through

The order nodes are visited:
D, C, E, G
Visited Array

A	
B	
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	

Visit G

Walk-Through

The order nodes are visited:
D, C, E, G

Visited Array

A	
B	
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	

Nodes D and H are adjacent to G. D has already been visited. Decide to visit H.

Walk-Through

The order nodes are visited:
D, C, E, G, H
Visited Array

A	
B	
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

H
G
E
D

Visit H

Walk-Through

The order nodes are visited:
D, C, E, G, H

Visited Array

A	
B	
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

H
G
E
D

Nodes A and B are adjacent to F. Decide to visit A next.

Walk-Through

Visited Array

A	\mathfrak{V}
B	
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

The order nodes are visited:
D, C, E, G, H, A

Walk-Through

The order nodes are visited:
D, C, E, G, H, A

Visited Array

A	\mathfrak{V}
B	
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

E
D
Only Node B is adjacent to A. Decide to visit B next.

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B
Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

B
A
H
G
E
D

Visit B

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

D
No unvisited nodes adjacent to B. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

H
G
E
D
No unvisited nodes adjacent to A. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

No unvisited nodes adjacent to H. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

E
 D

No unvisited nodes adjacent to
G. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

No unvisited nodes adjacent to E. Backtrack (pop the stack).

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	
G	\mathfrak{V}
H	\mathfrak{V}

F is unvisited and is adjacent to D. Decide to visit F next.

Walk-Through

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	\mathfrak{V}
G	\mathfrak{V}
H	\mathfrak{V}

The order nodes are visited:
D, C, E, G, H, A, B, F

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B, F

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	\mathfrak{V}
G	\mathfrak{V}
H	\mathfrak{V}

No unvisited nodes adjacent to F. Backtrack.

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B, F

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	\mathfrak{V}
G	\mathfrak{V}
H	\mathfrak{V}

No unvisited nodes adjacent to D. Backtrack.

Walk-Through

The order nodes are visited:
D, C, E, G, H, A, B, F

Visited Array

A	\mathfrak{V}
B	\mathfrak{V}
C	\mathfrak{V}
D	\mathfrak{V}
E	\mathfrak{V}
F	\mathfrak{V}
G	\mathfrak{V}
H	\mathfrak{V}

Stack is empty. Depth-first traversal is done.

Thank you

???

