

ADVANCED DATA STRUCTURES AND ALGORITHMS

Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology Computer Science Department

What this Lecture is about:

Graph Traversals (Search)
Breadth-first search
BFS: Level-by-level traversal
被 BFS for general graphs
Handling vertices

* Interesting features of BFS
* Interesting features of BFS

Graph Traversals (Search)

- We have covered some of these with binary trees
- Breadth-first search (BFS)
- Depth-first search (DFS)
- A traversal (search):
- An algorithm for systematically exploring a graph
- Visiting (all) vertices
- Until finding a goal vertex or until no more vertices

Breadth-first search

- One of the simplest algorithms
- Also one of the most important
- It forms the basis for MANY graph algorithms

BFS: Level-by-level traversal

- Given a starting vertex s
- Visit all vertices at increasing distance from s
- Visit all vertices at distance k from s
- Then visit all vertices at distance $\mathrm{k}+1$ from s
- Then

Breadth-first search

BFS in a binary tree (reminder)

BFS: visit all siblings before their descendents

Breadth-first searching

Queue

The queue is First-In-First-Out (FIFO) data structure.

BFS For General Graphs

Start with A. Put in the queue (marked red)

Example.

Queue: A B E

B and E are next

Example.

Queue: A B E C G D F

When we go to B, we put G and C in the queue When we go to E, we put D and F in the queue

Example.
 Queue: A B E C G D F

When we go to B, we put G and C in the queue When we go to E, we put D and F in the queue

Example.

Queue: ABECGDFF

Suppose we now want to expand C .
We put F in the queue again!

Generalizing BFS

- Cycles:
- We need to save auxiliary information
- Each node needs to be marked
- Visited: No need to be put on queue
- Not visited: Put on queue when found

What about assuming only two children vertices?

- Need to put all adjacent vertices in queue

The general BFS algorithm

- Each vertex can be in one of three states:
- Unmarked and not on queue
- Marked and on queue
- Marked and off queue
- The algorithm moves vertices between these states

Handling vertices

- Unmarked and not on queue:
- Not reached yet
- Marked and on queue:
- Known, but adjacent vertices not visited yet (possibly)
- Marked and off queue:
- Known, all adjacent vertices on queue or done with

Example

Queue: A

Start with A. Mark it.

Example

Queue: A B E

Expand A's adjacent vertices.
Mark them and put them in queue.

Example

Queue: A B E C G

Now take B off queue, and queue its neighbors.

Example
Queue: A B E C G D F

Do same with E.

Example

Queue: A B E C G D F

Visit C.

Its neighbor F is already marked, so not queued.

Example

Queue: A B E C G D F

Visit G.

Example

Queue: A B E C G D F

Visit D. F, E marked so not queued.

Example

Queue:

Visit F.
E, D, C marked, so not queued again.

Example

Queue:

Done. We have explored the graph in order: ABECGDF

Overview

Breadth-first search starts with given node

Task: Conduct a breadth-first search of the graph starting with node D

Overview

Breadth-first search starts with given node
Then visits nodes adjacent in some specified order (e.g., alphabetical) Like ripples in a pond

Nodes visited: D

Overview

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., alphabetical)

Like ripples in a pond

Nodes visited: D, C

Overview

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., alphabetical)

Like ripples in a pond

Nodes visited: D, C, E

Overview

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., alphabetical)

Like ripples in a pond

Nodes visited: D, C, E, F

Overview

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G

Overview

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G, H

Overview

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G, H, A

Overview

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G, H, A, B

Walk-Through

Enqueued Array

$Q \rightarrow$

How is this accomplished? Simply replace the stack with a queue! Rules: (1) Maintain an enqueued array. (2) Visit node when dequeued.

Walk-Through

Enqueued Array

Nodes visited:

A	
B	
C	
D	V
E	
F	
G	
H	

$Q \rightarrow \mathbf{D}$

Enqueue D. Notice, D not yet visited.

Walk-Through

Enqueued Array

Nodes visited: D

A	
B	
C	$\sqrt{ }$
D	$\sqrt{ }$
E	$\sqrt{ }$
F	$\sqrt{ }$
G	
H	

$Q \rightarrow C \rightarrow E \rightarrow F$

Dequeue D. Visit D. Enqueue unenqueued nodes adjacent to D.

Walk-Through

Enqueued Array

Nodes visited: D, C

A	
B	
C	$\sqrt{ }$
D	$\sqrt{ }$
E	$\sqrt{ }$
F	$\sqrt{ }$
G	
H	

$$
Q \rightarrow E \rightarrow F
$$

Dequeue C. Visit C. Enqueue unenqueued nodes adjacent to C.

Walk-Through

Enqueued Array

Nodes visited: D, C, E

A	
B	
C	$\sqrt{ }$
D	$\sqrt{ }$
E	V
F	$\sqrt{ }$
G	
H	

$Q \rightarrow F \rightarrow G$

Dequeue E . Visit E . Enqueue unenqueued nodes adjacent to E .

Walk-Through

Enqueued Array

Nodes visited: D, C, E, F

A	
B	
C	$\sqrt{ }$
D	$\sqrt{ }$
E	$\sqrt{ }$
F	$\sqrt{ }$
G	$\sqrt{ }$
H	

$\mathbf{Q} \rightarrow \mathbf{G}$

Dequeue F. Visit F. Enqueue unenqueued nodes adjacent to F.

Walk-Through

Enqueued Array

Nodes visited: D, C, E, F, G

A	
B	
C	$\sqrt{ }$
D	$\sqrt{ }$
E	$\sqrt{ }$
F	$\sqrt{ }$
G	$\sqrt{ }$
H	$\sqrt{ }$

$Q \rightarrow H$

Dequeue G. Visit G. Enqueue unenqueued nodes adjacent to G.

Walk-Through

Enqueued Array

Nodes visited: D, C, E, F, G, H

A	$\sqrt{ }$
B	$\sqrt{ }$
C	$\sqrt{ }$
D	$\sqrt{ }$
E	$\sqrt{ }$
F	$\sqrt{ }$
G	$\sqrt{ }$
H	V

$Q \rightarrow A \rightarrow B$

Dequeue H. Visit H. Enqueue unenqueued nodes adjacent to H .

Walk-Through

Nodes visited: D, C, E, F, G, H, A
Enqueued Array

A	$\sqrt{ }$
B	$\sqrt{ }$
C	$\sqrt{ }$
D	$\sqrt{ }$
E	$\sqrt{ }$
F	$\sqrt{ }$
G	$\sqrt{ }$
H	$\sqrt{ }$

$$
\mathbf{Q} \rightarrow \mathbf{B}
$$

Dequeue A. Visit A. Enqueue unenqueued nodes adjacent to A.

Walk-Through

Enqueued Array

Nodes visited: D, C, E, F, G, H, A, B

A	$\sqrt{ }$
B	$\sqrt{ }$
C	$\sqrt{ }$
D	$\sqrt{ }$
E	$\sqrt{ }$
F	$\sqrt{ }$
G	$\sqrt{ }$
H	$\sqrt{ }$

Q empty

Dequeue B. Visit B. Enqueue unenqueued nodes adjacent to B.

Walk-Through

Enqueued Array

Nodes visited: D, C, E, F, G, H, A, B

A	V
B	V
C	$\sqrt{ }$
D	V
E	$\sqrt{ }$
F	$\sqrt{ }$
G	$\sqrt{ }$
H	V

Q empty

Q empty. Algorithm done.

Breadth First Search Algorithm

Given $G=(V, E)$ and all v in V are marked unvisited,
Select one v in V and mark as visited;
Enqueue v in Q
While not is_empty(Q)
$\{$
$\mathrm{x}=\operatorname{front}(\mathrm{Q})$; dequeue (Q);
For each y in adjacent (x) if unvisited (y)
$\operatorname{Mark}(\mathrm{y})$; enqueue y in Q ; Process (x, y) ;
\}

0

(UHD

Thank you

???

