

ADVANCED DATA STRUCTURES AND ALGORITHMS

Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology Computer Science Department

Department of Computer Science _ UHD

What this Lecture is about:

- Graph Traversals (Search)
- Breadth-first search
- ✤ BFS: Level-by-level traversal
- Handling vertices
- Interesting features of BFS
- Interesting features of BFS

Graph Traversals (Search)

- We have covered some of these with binary trees
 - Breadth-first search (BFS)
 - Depth-first search (DFS)
- A traversal (search):
 - An algorithm for systematically exploring a graph
 - Visiting (all) vertices
 - Until finding a goal vertex or until no more vertices

- One of the simplest algorithms
- Also one of the most important
 - It forms the basis for MANY graph algorithms

BFS: Level-by-level traversal

- Given a starting vertex s
- Visit all vertices at increasing distance from s
 - Visit all vertices at distance k from s
 - Then visit all vertices at distance k+1 from s
 - Then

Breadth-first search

BFS in a binary tree (reminder)

BFS: visit all siblings before their descendents

Department of Computer Science _ UHD

Breadth-first searching

Node are explored in the order A B C D E F G H I J K L M N O P Q

J will be found before N

The queue is First-In-First-Out (FIFO) data structure.

Start with A. Put in the queue (marked red)

When we go to B, we put G and C in the queue When we go to E, we put D and F in the queue

When we go to B, we put G and C in the queue When we go to E, we put D and F in the queue

Generalizing BFS

<u>Cycles:</u>

- We need to save auxiliary information
- Each node needs to be marked
 - Visited: No need to be put on queue
 - Not visited: Put on queue when found

What about assuming only two children vertices?

• Need to put all adjacent vertices in queue

The general BFS algorithm

- Each vertex can be in one of three states:
 - Unmarked and not on queue
 - Marked and on queue
 - Marked and off queue
- The algorithm moves vertices between these states

Handling vertices

- Unmarked and not on queue:
 - Not reached yet
- Marked and on queue:
 - Known, but adjacent vertices not visited yet (possibly)
- Marked and off queue:
 - Known, all adjacent vertices on queue or done with

Queue: A

Start with A. Mark it.

Expand A's adjacent vertices. Mark them and put them in queue.

Queue: A B E C G Α Ε В С D G F

Now take B off queue, and queue its neighbors.

Do same with E.

Visit C.

Its neighbor F is already marked, so not queued.

Visit G.

Visit D. F, E marked so not queued.

E, D, C marked, so not queued again.

Done. We have explored the graph in order: ABECGDF

Breadth-first search starts with given node

Task: Conduct a breadth-first search of the graph starting with node D

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., **alphabetical**)

Like ripples in a pond

Nodes visited: D

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., **alphabetical**)

Like ripples in a pond

Nodes visited: D, C

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., alphabetical)

Like ripples in a pond

Nodes visited: D, C, E

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., alphabetical)

Like ripples in a pond

Nodes visited: D, C, E, F

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G, H

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G, H, A

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G, H, A, B

Enqueued Array

How is this accomplished? Simply replace the stack with a **queue**! Rules: (1) Maintain an *enqueued* array. (2) Visit node when *dequeued*.

Nodes visited:

Enqueue D. Notice, D not yet visited.

Enqueued Array

Nodes visited: D

Dequeue D. Visit D. Enqueue unenqueued nodes adjacent to D.

Enqueued Array

Enqueued Array A $Q \rightarrow E \rightarrow F$ B $\sqrt{}$ С D $\sqrt{}$ E $\sqrt{}$ F $\sqrt{}$ G Η

Nodes visited: D, C

Dequeue C. Visit C. Enqueue unenqueued nodes adjacent to C.

Enqueued Array

Nodes visited: D, C, E

Dequeue E. Visit E. Enqueue unenqueued nodes adjacent to E.

Enqueued Array

Nodes visited: D, C, E, F

Dequeue F. Visit F. Enqueue unenqueued nodes adjacent to F.

Enqueued Array

Nodes visited: D, C, E, F, G

Dequeue G. Visit G. Enqueue unenqueued nodes adjacent to G.

Enqueued Array

Nodes visited: D, C, E, F, G, H

Dequeue H. Visit H. Enqueue unenqueued nodes adjacent to H.

Enqueued Array Α V $Q \rightarrow B$ B $\sqrt{}$ С $\sqrt{}$ D \mathbf{N} E $\sqrt{}$ F $\sqrt{}$ G $\sqrt{}$ Η $\sqrt{}$

Nodes visited: D, C, E, F, G, H, A

Dequeue A. Visit A. Enqueue unenqueued nodes adjacent to A.

Enqueued Array

Nodes visited: D, C, E, F, G, H, A, B

Dequeue B. Visit B. Enqueue unenqueued nodes adjacent to B.

Nodes visited: D, C, E, F, G, H, A, B

Q empty. Algorithm done.

Enqueued Array

D

E

F

G

Η

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

Given G = (V, E) and all v in V are marked unvisited,

Select one v in V and mark as visited; Enqueue v in Q

```
While not is_empty(Q)
```

```
x = front(Q); dequeue(Q);
For each y in adjacent (x) if unvisited (y)
```

```
Mark(y); enqueue y in Q;
Process (x, y) ;
```


Thank you

