
Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology

Computer Science Department

2015 – 2016
1Department of Computer Science _ UHD

What this Lecture is about:

☼ Graph Traversals (Search)

☼ Breadth-first search

☼ BFS: Level-by-level traversal

☼ BFS for general graphs

☼ Handling vertices

☼ Interesting features of BFS

☼ Interesting features of BFS

Department of Computer Science _ UHD
2

3

Graph Traversals (Search)

 We have covered some of these with binary trees

 Breadth-first search (BFS)

 Depth-first search (DFS)

 A traversal (search):

 An algorithm for systematically exploring a graph

 Visiting (all) vertices

 Until finding a goal vertex or until no more vertices

Department of Computer Science _ UHD

4

Breadth-first search

 One of the simplest algorithms

 Also one of the most important

 It forms the basis for MANY graph algorithms

Department of Computer Science _ UHD

5

BFS: Level-by-level traversal

 Given a starting vertex s

 Visit all vertices at increasing distance from s

 Visit all vertices at distance k from s

 Then visit all vertices at distance k+1 from s

 Then ….

Department of Computer Science _ UHD

6

BFS in a binary tree (reminder)

BFS: visit all siblings before their descendents

5

2

1 3

8

6 10

7 9
5 2 8 1 3 6 10 7 9

Department of Computer Science _ UHD

Breadth-first searching

Department of Computer Science _ UHD 7

L M N O P

G

Q

H JI K

FED

B C

A

 Node are explored in the order
A B C D E F G H I J K L M N
O P Q

 J will be found before N

Department of Computer Science _ UHD 8

The queue is First-In-First-Out (FIFO) data structure.

Queue

9

Start with A. Put in the queue (marked red)

A

B

G C

E

D

F

Queue: A

Department of Computer Science _ UHD

BFS For General Graphs

10

B and E are next

A

B

G C

E

D

F

Queue: A B E

Department of Computer Science _ UHD

Example.

11

When we go to B, we put G and C in the queue

When we go to E, we put D and F in the queue

A

B

G C

E

D

F

Queue: A B E C G D F

Department of Computer Science _ UHD

Example.

12

When we go to B, we put G and C in the queue

When we go to E, we put D and F in the queue

A

B

G C

E

D

F

Queue: A B E C G D F

Department of Computer Science _ UHD

Example.

13

Suppose we now want to expand C.

We put F in the queue again!

A

B

G C

E

D

F

Queue: A B E C G D F F

Department of Computer Science _ UHD

Example.

14

Generalizing BFS

 Cycles:

 We need to save auxiliary information

 Each node needs to be marked

 Visited: No need to be put on queue

 Not visited: Put on queue when found

What about assuming only two children vertices?

 Need to put all adjacent vertices in queue

Department of Computer Science _ UHD

15

The general BFS algorithm

 Each vertex can be in one of three states:

 Unmarked and not on queue

 Marked and on queue

 Marked and off queue

 The algorithm moves vertices between these

states

Department of Computer Science _ UHD

16

Handling vertices

 Unmarked and not on queue:

 Not reached yet

 Marked and on queue:

 Known, but adjacent vertices not visited yet (possibly)

 Marked and off queue:

 Known, all adjacent vertices on queue or done with

Department of Computer Science _ UHD

17

Start with A. Mark it.

A

B

G C

E

D

F

Queue: A

Department of Computer Science _ UHD

Example

18

Expand A’s adjacent vertices.

Mark them and put them in queue.

A

B

G C

E

D

F

Queue: A B E

Department of Computer Science _ UHD

Example

19

Now take B off queue, and queue its neighbors.

A

B

G C

E

D

F

Queue: A B E C G

Department of Computer Science _ UHD

Example

20

Do same with E.

A

B

G C

E

D

F

Queue: A B E C G D F

Department of Computer Science _ UHD

Example

21

Visit C.

Its neighbor F is already marked, so not queued.

A

B

G C

E

D

F

Queue: A B E C G D F

Department of Computer Science _ UHD

Example

22

Visit G.

A

B

G C

E

D

F

Queue: A B E C G D F

Department of Computer Science _ UHD

Example

23

Visit D. F, E marked so not queued.

A

B

G C

E

D

F

Queue: A B E C G D F

Department of Computer Science _ UHD

Example

24

Visit F.

E, D, C marked, so not queued again.

A

B

G C

E

D

F

Queue: A B E C G D F

Department of Computer Science _ UHD

Example

25

Done. We have explored the graph in order:

 A B E C G D F

A

B

G C

E

D

F

Queue: A B E C G D F

Department of Computer Science _ UHD

Example

A

H

B

F

E

D

C

G

Overview

Task: Conduct a breadth-first search of the graph

starting with node D

Breadth-first search starts with given

node

0

A

H

B

F

E

D

C

G

Overview

Nodes visited: D

Breadth-first search starts with

given node

Then visits nodes adjacent in some

specified order (e.g., alphabetical)

Like ripples in a pond
0

1

A

H

B

F

E

D

C

G

Overview

Nodes visited: D, C

Breadth-first search starts with given

node

Then visits nodes adjacent in some

specified order (e.g., alphabetical)

Like ripples in a pond

0

1

A

H

B

F

E

D

C

G

Overview

Nodes visited: D, C, E

Breadth-first search starts with given

node

Then visits nodes adjacent in some

specified order (e.g., alphabetical)

Like ripples in a pond

0

1

A

H

B

F

E

D

C

G

Overview

Nodes visited: D, C, E, F

Breadth-first search starts with given

node

Then visits nodes adjacent in some

specified order (e.g., alphabetical)

Like ripples in a pond

0

1

A

H

B

F

E

D

C

G

Overview

Nodes visited: D, C, E, F, G

When all nodes in ripple are visited,

visit nodes in next ripples

0

2 1

A

H

B

F

E

D

C

G

Overview

Nodes visited: D, C, E, F, G, H

When all nodes in ripple are visited,

visit nodes in next ripples

0

2 1

3

A

H

B

F

E

D

C

G

Overview

Nodes visited: D, C, E, F, G, H, A

When all nodes in ripple are visited,

visit nodes in next ripples

0

2 1

3

4

A

H

B

F

E

D

C

G

Overview

Nodes visited: D, C, E, F, G, H, A, B

When all nodes in ripple are visited,

visit nodes in next ripples

0

2 1

3

4

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A

B

C

D

E

F

G

H

How is this accomplished? Simply replace the stack with a

queue! Rules: (1) Maintain an enqueued array. (2) Visit node

when dequeued.

Q 

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A

B

C

D ã

E

F

G

H

Enqueue D. Notice, D not yet visited.

Q  D

Nodes visited:

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A

B

C ã

D ã

E ã

F ã

G

H

Dequeue D. Visit D. Enqueue unenqueued nodes adjacent to D.

Q  C  E  F

Nodes visited: D

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A

B

C ã

D ã

E ã

F ã

G

H

Dequeue C. Visit C. Enqueue unenqueued nodes adjacent to C.

Q  E  F

Nodes visited: D, C

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A

B

C ã

D ã

E ã

F ã

G

H

Dequeue E. Visit E. Enqueue unenqueued nodes adjacent to E.

Q  F  G

Nodes visited: D, C, E

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A

B

C ã

D ã

E ã

F ã

G ã

H

Dequeue F. Visit F. Enqueue unenqueued nodes adjacent to F.

Q  G

Nodes visited: D, C, E, F

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A

B

C ã

D ã

E ã

F ã

G ã

H ã

Dequeue G. Visit G. Enqueue unenqueued nodes adjacent to G.

Q  H

Nodes visited: D, C, E, F, G

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A ã

B ã

C ã

D ã

E ã

F ã

G ã

H ã

Dequeue H. Visit H. Enqueue unenqueued nodes adjacent to H.

Q  A  B

Nodes visited: D, C, E, F, G, H

A

H

B

F

E

D

C

G

Walk-Through
Enqueued Array

A ã

B ã

C ã

D ã

E ã

F ã

G ã

H ã

Dequeue A. Visit A. Enqueue unenqueued nodes adjacent to A.

Q  B

Nodes visited: D, C, E, F, G, H, A

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A ã

B ã

C ã

D ã

E ã

F ã

G ã

H ã

Dequeue B. Visit B. Enqueue unenqueued nodes adjacent to B.

Q empty

Nodes visited: D, C, E, F, G, H, A, B

A

H

B

F

E

D

C

G

Walk-Through

Enqueued Array

A ã

B ã

C ã

D ã

E ã

F ã

G ã

H ã

Q empty. Algorithm done.

Q empty

Nodes visited: D, C, E, F, G, H, A, B

Department of Computer Science _ UHD

46

Given G = (V, E) and all v in V are marked unvisited,

Select one v in V and mark as visited;

Enqueue v in Q

While not is_empty(Q)

{

x = front(Q); dequeue(Q);

For each y in adjacent (x) if unvisited (y)

{

Mark(y); enqueue y in Q;

Process (x, y) ;

}

Breadth First Search Algorithm

47

Thank you

???

Department of Computer Science _ UHD

