Advanced Data Structures and Algorithms

Associate Professor Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology Computer Science Department

$$
2015-2016
$$

What this Lecture is about:

Graph Concepts

- Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component
- Types of graphs: undirected, directed, weighted
- Graph representations: adjacency matrix, array adjacency lists, linked adjacency lists
- Graph search methods: breath-first, depth-first search

Graphs

$\Rightarrow G=(V, E)$
${ }_{\rightarrow} \mathrm{V}$ is the vertex set.
\rightarrow Vertices are also called nodes and points.
$\rightarrow E$ is the edge set.
\rightarrow Each edge connects two vertices.
\rightarrow Edges are also called arcs and lines.
\rightarrow Vertices i and j are adjacent vertices iff (i, j) has an edge in the graph

Directed and Undirected Graphs

- Directed graph:
- < v1, v2 > in E is ordered, ie., a relation (v1,v2)
- Undirected graph:
- < v1, v2 > in E is un-ordered, ie., a set $\{\mathrm{v} 1, \mathrm{v} 2\}$
- Degree of a node X :
- Out-degree: number of edges $\langle\mathrm{X}, \mathrm{v} 2>$
- In-degree: number of edges < vi, X >
- Degree: In-degree + Out-degree

Graphs

- Undirected edge has no orientation (no arrow head)
- Directed edge has an orientation (has an arrow head)
- Undirected graph - all edges are undirected
- Directed graph - all edges are directed

tail head
 undirected edge

 directed edge

Applications - Communication Network

Applications - Communication Network

vertex = Router
edge $=$ Communication link

Applications - Driving Distance/Time Map

vertex = City
edge weight $=$ Driving Distance/Time

Applications - Street Map

- Streets are one- or two-way.
- A single directed edge denotes a one-way street
- A two directed edge denotes a two-way street

A "Real-life" Example of a Graph

- V=set of 6 people: John, Mary, Joe, Helen, Tom, and Paul, of ages 12, 15, 12, 15, 13, and 13 , respectively.
- $E=\{(x, y) \mid$ if x is younger than $y\}$

Examples for Graph

G1
complete graph
$\mathrm{V}\left(\mathrm{G}_{1}\right)=\{0,1,2,3\}$
$V\left(G_{2}\right)=\{0,1,2,3,4,5,6\}$
$\mathrm{V}(\mathrm{G} 3)=\{0,1,2\}$

$G 2$
complete undirected graph: $\mathbf{n}(\mathbf{n} \mathbf{- 1}) / \mathbf{2}$ edges complete directed graph: $\quad \mathbf{n}(\mathbf{n - 1})$ edges

Subgraphs of G_{1}

(a) Some of the subgraph of \mathbf{G}_{1}

Subgraphs of \mathbf{G}_{3}

(ii)

(iii)

G3
(b) Some of the subgraph of \mathbf{G}_{3}

Intuition Behind Graphs

- The nodes represent entities (such as people, cities, computers, words, etc.)
- Edges (x,y) represent relationships between entities x and y, such as:
- "x loves y"
- "x hates y"
- "x is a friend of $y "$ (note that this not necessarily reciprocal)
- "x considers y a friend"
- "x is a child of y "
- "x is a half-sibling of $y "$
- "x is a full-sibling of $y "$
- In those examples, each relationship is a different graph

Graph Representation

- For graphs to be computationally useful, they have to be conveniently represented in programs
- There are two computer representations of graphs:
- Adjacency matrix representation
- Adjacency lists representation

Adjacency Matrix Representation

- In this representation, each graph of n nodes is represented by an $n \times n$ matrix A, that is, a two-dimensional array A
- The nodes are (re)-labeled $1,2, \ldots, n$
- $A[i][j]=1$ if (i, j) is an edge
- $A[i][j]=0$ if (i, j) is not an edge

Example of Adjacency Matrix

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Another Example of Adj. Matrix

Representing Graphs

- Assume $\mathrm{V}=\{1,2, \ldots, n\}$
- An adjacency matrix represents the graph as a $n \times n$ matrix A:

$$
\begin{aligned}
-\mathrm{A}[i, j] & =1 \text { if edge }(i, j) \in \mathrm{E} \quad \text { (or weight of edge) } \\
& =0 \text { if edge }(i, j) \notin \mathrm{E}
\end{aligned}
$$

Graphs: Adjacency Matrix

- Example:

Pros and Cons of Adjacency Matrices

- Pros:
- Simple to implement
- Easy and fast to tell if a pair (i, j) is an edge: simply check if $\mathrm{A}[\mathrm{i}][\mathrm{j}]$ is 1 or 0
- Cons:
- No matter how few edges the graph has, the matrix takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in memory

Adjacency Lists Representation

- A graph of n nodes is represented by a onedimensional array L of linked lists, where
- L[i] is the linked list containing all the nodes adjacent from node i.
- The nodes in the list L[i] are in no particular order

Example of Linked Representation

L[0]: empty
L[1]: empty
L[2]: 0, 1, 4, 5
L[3]: $0,1,4,5$
L[4]: 0, 1
L[5]: 0, 1

Examples

Undirected graphs:

- Each edge is represented twice

Pros and Cons of Adjacency Lists

- Pros:
- Saves on space (memory): the representation takes as many memory words as there are nodes and edge.
- Cons:
- It can take up to $\mathrm{O}(\mathrm{n})$ time to determine if a pair of nodes (i, j) is an edge: one would have to search the linked list L[i], which takes time proportional to the length of L[i].

Example of Representations

Linked Lists:
 L[0]: 1, 2, 3
 L[1]: 0, 2, 3
 L[2]: $0,1,3$
 L[3]: 0, 1, 2
 L[4]: 5
 L[5]: 4

Adjacency Matrix:

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Thank you ???

