

Data Mining

Dr. Raed Ibraheem Hamed

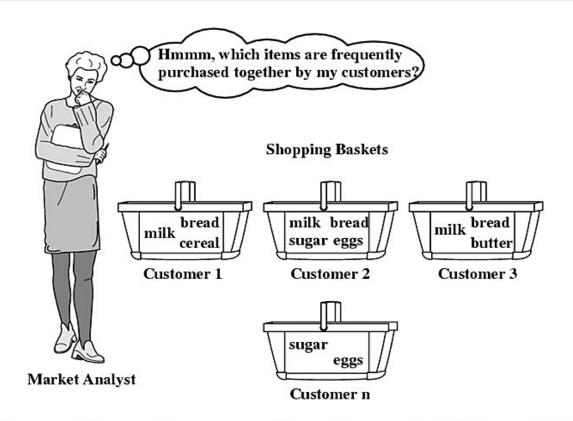
University of Human Development, College of Science and Technology Department of Computer Science

Road map

- Association rule mining
- Market-Basket Data
- Frequent Itemsets
- Association rule Applications
- Association Rules Definition
- Measure 1: Support
- Measure 2: Confidence
- Transaction data: supermarket data
- Rule strength measures

Association rule mining

- Proposed by Agrawal et al in 1993.
- It is an important data mining model studied extensively by the database and data mining community.
- Initially used for **Market Basket Analysis** to find how items purchased by customers are related.


Market-Basket Data

• A large set of items, e.g., things sold in a supermarket.

• A large set of baskets, each of which is a small set of the items, e.g., the things one customer buys on one day.

Market Basket Analysis

Typically, association rules are considered interesting if they satisfy both a minimum support threshold and a minimum confidence threshold.

Frequent Itemsets

Given a set of transactions, find combinations of items
 (itemsets) that occur frequently

Market-Basket transactions

Support *s*(*I*): number of transactions that contain itemset *I*

Items: {Bread, Milk, Diaper, Beer, Eggs, Coke}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of frequent itemsets $s(I) \ge 3$

{Bread}: 4 {Milk} : 4 {Diaper} : 4 {Beer}: 3 {Diaper, Beer} : 3 {Milk, Bread} : 3

Association rule Applications

 Items = products; baskets = sets of products someone bought in one trip to the store.

- Example application: given that many people buy tea and sugar together:
 - Run a sale on sugar; raise price of tea.
 - Only useful if many buy sugar & tea.

Association Rules Definition

Association rules are if/then statements that help uncover relationships between seemingly unrelated data in a relational database or other information repository. An example of an association rule would be "If a customer buys a dozen eggs, he is 80% likely to also purchase milk."

There are two common ways to measure association.

Measure 1: Support.

Measure 1: Support. This says how popular an itemset is, as measured by the proportion of transactions in which an itemset appears. In Table 1 below, the support of {apple} is 4 out of 8, or 50%. Itemsets can also contain multiple items.

For instance, the support of {apple, beer, rice} is 2 out of 8, or 25%.

Support
$$\{ \bigcirc \} = \frac{4}{8}$$

Measure 1: Support.

Transaction 1	(a) (b) (c) %
Transaction 2	
Transaction 3	9 1
Transaction 4	Ö
Transaction 5	Ø 🕑 😏
Transaction 6	Ø 🗑 😑
Transaction 7	Ø 🕦
Transaction 8	Ø 0

Table 1. Example Transactions

If you discover that sales of items beyond a certain proportion tend to have a significant impact on your profits, you might consider using that proportion as your support threshold.

You may then identify itemsets with support values above this threshold as significant itemsets.

Measure 2: Confidence.

Measure 2: Confidence. This says how likely item Y is purchased when item X is purchased, expressed as $\{X \longrightarrow Y\}$.

This is measured by the proportion of transactions with item X, in which item Y also appears. In Table 1, the confidence of $\{apple \rightarrow beer\}$ is 3 out of 4, or 75%.

Confidence
$$\{ \bigcirc \rightarrow \mathbb{P} \} = \frac{\text{Support } \{ \bigcirc , \mathbb{P} \}}{\text{Support } \{ \bigcirc \}}$$

Confidence =
$$0.375 / 0.5 = 0.75$$

Support and Confidence Example

Transaction ID	Items Bought
1	Shoes, Shirt, Jacket
2	Shoes,Jacket
3	Shoes, Jeans
4	Shirt, Sweatshirt

If the **support** is 50%, then {Shoes, Jacket} is the only 2- itemset that satisfies the support.

Frequent Itemset	Support
{Shoes}	75%
{Shirt}	50%
{Jacket}	50%
{Shoes, Jacket}	50%

If the **confidence** is 50%, then the only two rules generated from this 2-itemset, that have confidence are:

Shoes ⇒ Jacket Support=50%, Confidence=66% Jacket ⇒ Shoes Support=50%, Confidence=100%

Support and Confidence Example

• Given a database of transactions:

Transaction	Items
t_1	Bread,Jelly,PeanutButter
t_2	Bread,PeanutButter
t_3	Bread,Milk,PeanutButter
t_4	Beer,Bread
t_5	${f Beer, Milk}$

• Find all the association rules:

$X \Rightarrow Y$	s	α
${f Bread}\Rightarrow{f PeanutButter}$	60%	75%
$PeanutButter \Rightarrow Bread$	60%	100%
$\mathrm{Beer} \Rightarrow \mathrm{Bread}$	20%	50%
${ m PeanutButter}\Rightarrow { m Jelly}$	20%	33.3%
$ m Jelly \Rightarrow PeanutButter$	20%	100%
$ extbf{Jelly} \Rightarrow ext{Milk}$	0%	0%

The model: data

- $I = \{i_1, i_2, ..., i_m\}$: a set of *items*.
- Transaction *t*:
 - \Box t a set of items, and $t \subseteq I$.
- Transaction Database T: a set of transactions $T = \{t_1, t_2, ..., t_n\}$.

Transaction data: supermarket data

Market basket transactions:

```
t1: {bread, cheese, milk}t2: {apple, eggs, salt, yogurt}...tn: {biscuit, eggs, milk}
```

Concepts:

- □ An *item*: an item/article in a basket
- □ I the set of all items sold in the store
- □ A *transaction*: items purchased in a basket; it may have TID (transaction ID)
- □ A transactional dataset: A set of transactions

Transaction data: a set of documents

A text document data set. Each document is treated as a "bag" of keywords

doc1: Student, Teach, School

doc2: Student, School

doc3: Teach, School, City, Game

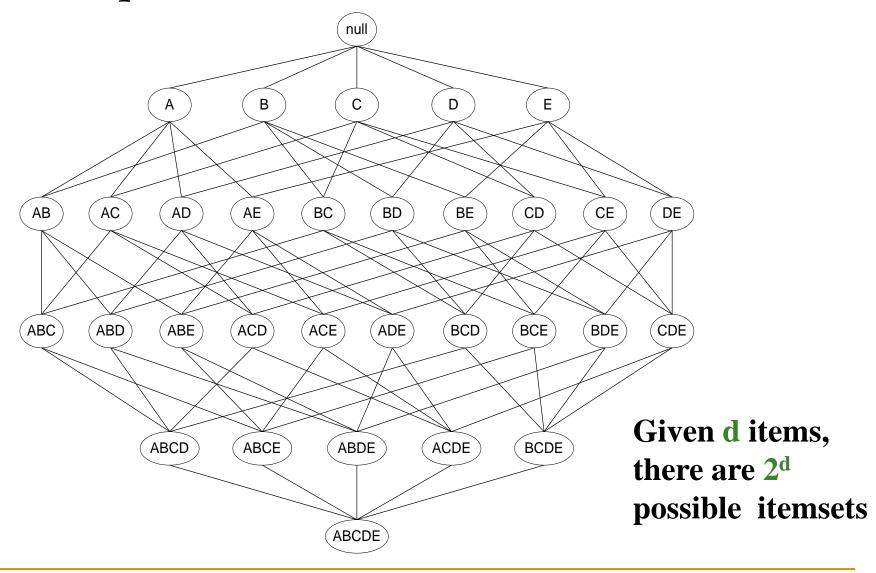
doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator

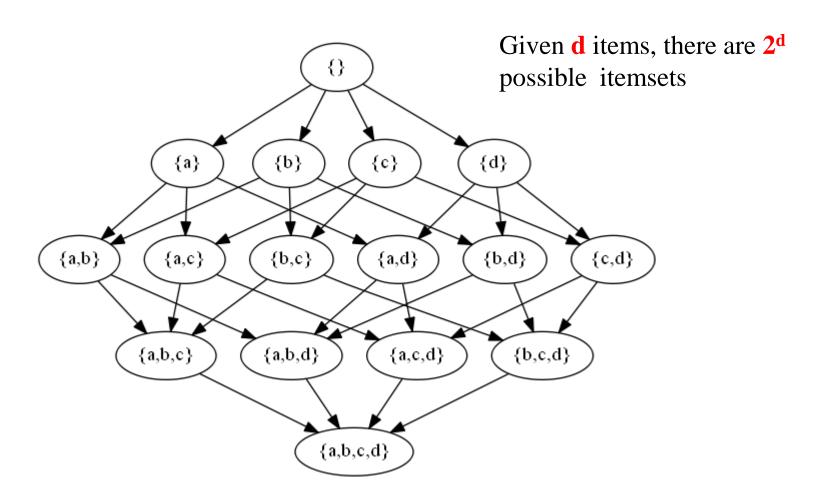
doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game

Transaction data representation

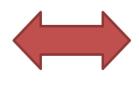

- A simplistic view of shopping baskets,
- Some important information not considered. E.g,
 - the quantity of each item purchased and
 - the price paid.

Mining Frequent Itemsets task


- Input: A set of transactions T, over a set of items I
- Output: All possible itemsets

- Problem parameters:
 - \square N = |T|: number of transactions
 - □ d = |I|: number of (distinct) items
 - w: max width of a transaction
 - \square M: Number of possible itemsets $M = 2^d$?

Frequent Itemset Generation Network



Frequent Itemset Generation Network

A Binary Data Matrix of a Transactions Database

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

	Beer	Bread	Milk	Diaper	Eggs	Coke
T_1	0	1	1	0	0	0
T_2	1	1	0	1	1	0
T_3	1	0	1	1	0	1
T_4	1	1	1	1	0	0
T_5	0	1	1	1	0	1

