

Data Mining

Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology Department of Computer Science

- The Apriori algorithm
- Step 1: Mining all frequent itemsets
- Definition of Apriori Algorithm
- Definition (contd.)
- Steps to Perform Apriori Algorithm
- The Apriori Algorithm Example-1
- The Apriori Algorithm Example-2
- **Step 1**: Generating 1-itemset Frequent Pattern
- Step 2: Generating 2-itemset Frequent Pattern
- **Step 3**: Generating 3-itemset Frequent Pattern
- **Step 4**: Generating 4-itemset Frequent Pattern
- **Step 5:** Generating Association Rules from Frequent Itemsets

The Apriori algorithm Key Concepts :

- Frequent Itemsets: The sets of item which has minimum support (denoted by Li for ith-Itemset).
- 2. Apriori Property: Any subset of frequent itemset must be frequent.
- **3**. Join Operation: To find **Lk** , a set of candidate k-itemsets is generated by joining Lk-1 with itself.

Definition (contd.)

- Apriori uses a "bottom up" approach, where frequent subsets are extended one item at a time (a step known as **candidate generation**, and groups of candidates are tested against the data.
- The algorithm terminates when no further successful extensions are found.

Steps to Perform Apriori Algorithm

Step1

Scan the transaction database to get the support S of each 1-itemset, compare S with min_sup, and get a set of frequent 1-itemsets, L₁

Apriori Algorithm

Step2

Step6

Use L _{k-1} join L _{k-1} to generate a set of candidate k-itemsets. And use Apriori property to prune the unfrequented k-itemsets from this set Scan the transaction database to get the support S of each candidate k-itemset in the final set, compare S with min_sup, and get a set of frequent k-itemsets, L_k

> Step4: The candidate set = Null

> > YES

Step5 For each frequent itemset l, generate allownempty subsets of l

For every nonempty subset s of 1, output the rule " s => (1-s)" if confidence C of the rule " s => (1-s)" (=support S of 1/support S of s) ' min_conf

NO

The Apriori Algorithm: Example

TID	List of Items
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2 ,I3, I5
Т900	I1, I2, I3

- Consider a database, D , consisting of 9 transactions.
- Suppose min.support count required is 2 (i.e. min_sup = 2/9 = 22 %)
- Let minimum confidence required is 70%.
- We have to first find out the frequent itemset using Apriori algorithm.
- Then, Association rules will be generated using min. support & min. confidence.

Step 1: Generating 1-itemset Frequent Pattern

- In the first iteration of the algorithm, each item is a member of the set of candidate.
- The set of frequent 1-itemsets, L₁, consists of the candidate 1-itemsets satisfying minimum support.

Step 2: Generating 2-itemset Frequent Pattern

Department of CS ---- DM ---- UHD

- To discover the set of frequent 2-itemsets, L₂, the algorithm uses L₁ Join L₁ to generate a candidate set of 2-itemsets, C₂.
- Next, the transactions in D are scanned and the support count for each candidate itemset in C₂ is accumulated (as shown in the middle table).
- The set of frequent 2-itemsets, L_2 , is then determined, consisting of those candidate 2-itemsets in C_2 having minimum support.
- Note: We haven't used Apriori Property yet.

Step 3: Generating 3-itemset Frequent Pattern

• The generation of the set of candidate 3-itemsets, C_3 , involves use of the Apriori Property.

• In order to find C_3 , we compute L_2 *Join* L_2 .

• $C_3 = L2 Join L2 = \{\{I1, I2, I3\}, \{I1, I2, I5\}, \{I1, I3, I5\}, \{I2, I3, I4\}, \{I2, I3, I5\}, \{I2, I4, I5\}\}.$

• Now, Join step is complete and Prune step will be used to reduce the size of C_3 . Prune step helps to avoid heavy computation due to large C_k .

Step 3: Generating 3-itemset Frequent Pattern [Cont.]

- Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we can determine that four candidates cannot possibly be frequent. How ?
- For example , lets take {I1, I2, I3}. The 2-item subsets of it are {I1, I2}, {I1, I3} & {I2, I3}. Since all 2-item subsets of {I1, I2, I3} are members of L₂, We will keep {I1, I2, I3} in C₃.
- Lets take another example of {I2, I3, I5} which shows how the pruning is performed. The 2-item subsets are {I2, I3}, {I2, I5} & {I3,I5}.
- BUT, {I3, I5} is not a member of L₂ and hence it is not frequent violating Apriori Property. Thus We will have to remove {I2, I3, I5} from C₃.
- Therefore, C₃ = {{I1, I2, I3}, {I1, I2, I5}} after checking for all members of result of Join operation for Pruning.
- Now, the transactions in D are scanned in order to determine L₃, consisting of those candidates 3-itemsets in C₃ having minimum support.
 Department of CS ---- DM ---- UHD

11

Step 4: Generating 4-itemset Frequent Pattern

- The algorithm uses L₃ Join L₃ to generate a candidate set of 4-itemsets, C₄. Although the join results in {{I1, I2, I3, I5}}, this itemset is pruned since its subset {{I2, I3, I5}} is not frequent.
- Thus, $C_4 = \phi$, and algorithm terminates, having found all of the frequent items. This completes our Apriori Algorithm.

• What's Next ?

These frequent itemsets will be used to generate strong association rules (where strong association rules satisfy both minimum support & minimum confidence).

The Apriori Algorithm — Example

Example of Apriori Run

Apriori algorithm example

