

Data Mining

Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology Department of CS

2016 - 2017

Road map

- Common Distance measures
- The Euclidean Distance between 2 variables
- K-means Clustering
- How the K-Mean Clustering algorithm works?
- Step 1:
- Step 2:
- Step 3:
- Step 4:
- More examples of K-Mean Clustering
- Demonstration of PAM
- Steps of PAM

Common Distance measures:

Distance measure will determine how the *similarity* of two elements is calculated and it will influence the shape of the clusters.

They include:

1. The **Euclidean distance** (also called 2-norm distance) is given by:

$$d = \sqrt{\sum_{i=1}^{p} (v_{1i} - v_{2i})^2}$$

2. The Manhattan distance .

The Euclidean Distance between 2 variables

The formula for calculating the distance between the two variables, given three persons scoring on each as shown below is:

Table 1

$$d = \sqrt{\sum_{i=1}^{p} (v_{1i} - v_{2i})^2}$$

	1 Var1	2 Var2
Person 1	20	80
Person 2	30	44
Person 3	90	40

For the distance between person 1 and 2, the calculation is:

$$d = \sqrt{(20 - 30)^2 + (80 - 44)^2} = 37.36$$

For the distance between person 1 and 3, the calculation is:

$$d = \sqrt{(20 - 90)^2 + (80 - 40)^2} = 80.62$$

For the distance between person 2 and 3, the calculation is:

$$d = \sqrt{(30 - 90)^2 + (44 - 40)^2} = 60.13$$

K-means Clustering

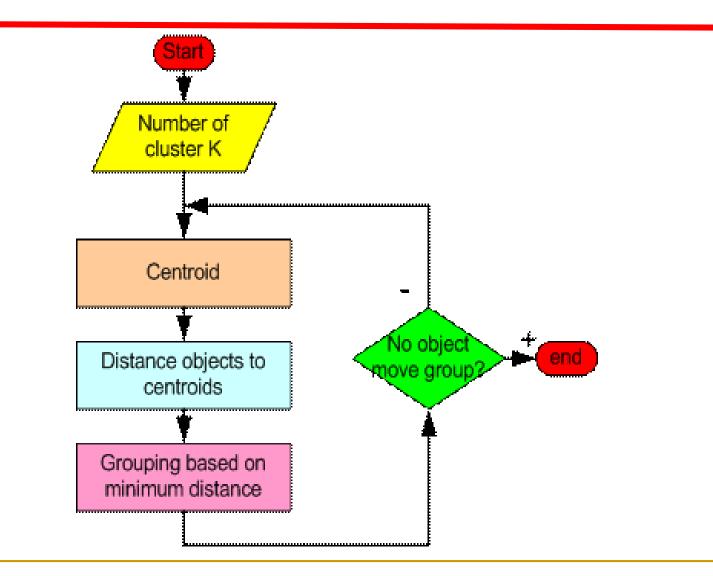
Basic Algorithm:

- **Step 0**: select K
- **Step 1**: randomly select initial cluster seeds
- Step 2: calculate distance from each object to each cluster seed.
- What type of distance should we use?
 - Squared Euclidean distance
- **Step 3**: Assign each object to the closest cluster

K-means Clustering

- Step 4: Compute the new centroid for each cluster
- Iterate:
 - Calculate distance from objects to cluster centroids.
 - Assign objects to closest cluster
 - Recalculate new centroids
- Stop based on convergence criteria
 - No change in clusters
 - Max iterations

How the K-Mean Clustering algorithm works?

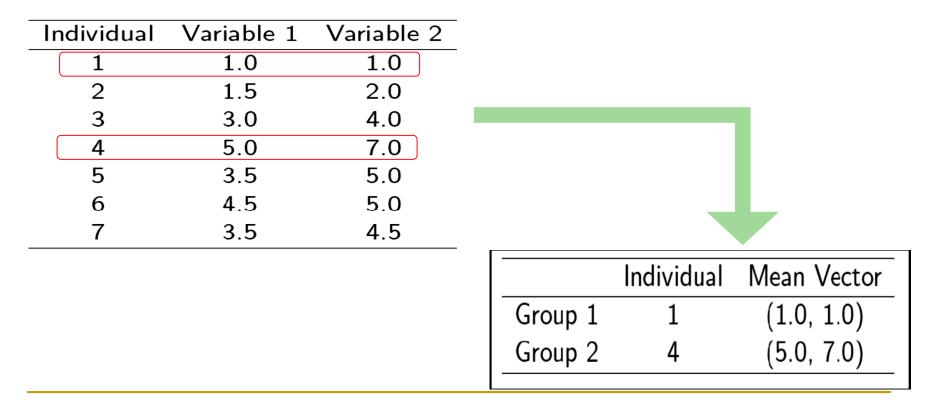


A Simple example showing the implementation of k-means algorithm

Individual	Variable 1	Variable 2	
1	1.0	1.0	
2	1.5	2.0	
3	3.0	4.0	
4	5.0	7.0	
5	3.5	5.0	
6	4.5	5.0	
7	3.5	4.5	

Initialization: Randomly we choose following two centroids (k=2) for two clusters.

In this case the 2 centroid are: m1 = (1.0, 1.0) and m2 = (5.0, 7.0).



• Now using these centroids (i.e. m1(1.0, 1.0), and m2(5.0, 7.0)) we compute the **Euclidean distance of each object**, as shown in table.

$$d(m_1, 2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

$$d(m_2, 2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

Individual	centroid 1	centroid 2
1	0	7.21
2 (1.5, 2.0)	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

Thus, we obtain two clusters containing:
 {1,2,3} and {4,5,6,7}.

• Now we compute the new centroids as:

$$m_{1} = \left(\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)\right) = (1.83, 2.33)$$

$$m_{2} = \left(\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5)\right) = (4.12, 5.38)$$

m1(1 83 2 33)

Step 3:

Now using these centroids (i.e. m1(1.83, 2.33), and m2(4.12, 5.38)) to compute the Euclidean distance of each object, as shown in table.

Individual	Centroid 1	Centroid 2
1	1.57	5.38
2	0.47	4.28
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

Step 3:

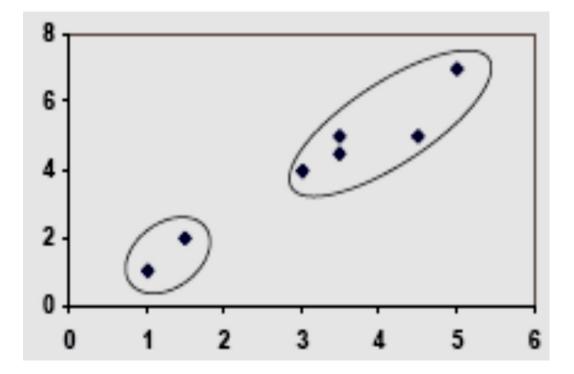
- Therefore, the new clusters are: $\{1,2\}$ and $\{3,4,5,6,7\}$
- Next centroids are: m1 = (1.25, 1.5) and m2 = (3.9, 5.1)
- Note: every time we need to compute the new centroids depending on the original table.

Step 4 :

- We compute the Euclidean distance
- The clusters obtained are:
 {1,2} and {3,4,5,6,7}
- Therefore, there is no change in the cluster.
- Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

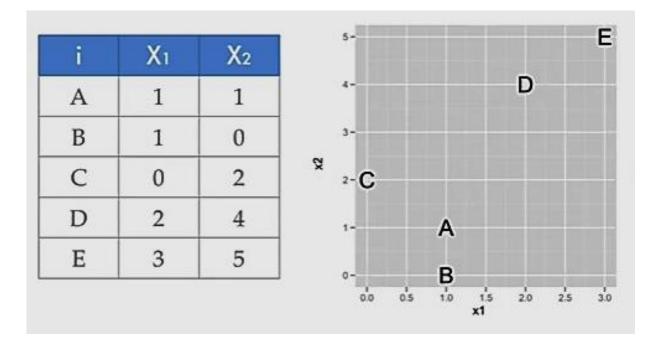
Individual	Centroid 1	Centroid 2
1	0.56	5.02
2	0.56	3.92
3	3.05	1.42
4	6.66	2.20
5	4.16	0.41
6	4.78	0.61
7	3.75	0.72

PLOT

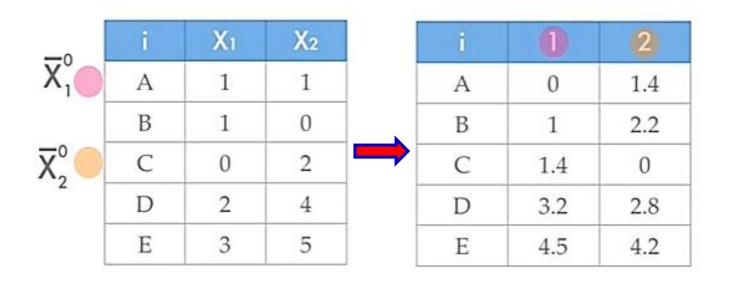


Step - 0

• Use K=2 Suppose A and C are Randomly selected as the initial means.



Step – 1.1



Compute distances between each of the cluster means and all other points.

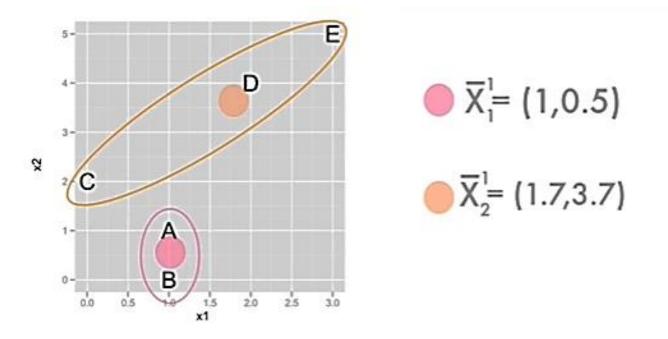
Step – 1.1

✤ The clusters obtained are: {A,B} and {C,D,E}

i	0	2	Cluster	i	X 1	Х2		
Α	0	1.4	1	А	1	1	$\overline{\mathbf{x}}^1$	
В	1	2.2	1	В	1	0	$-\Lambda_1$	
С	1.4	0	2	С	0	2	$\overline{\nabla}^1$	● X ¹ ₁ = (1,0.5)
D	3.2	2.8	2	D	2	4	\overline{X}_{2}^{1}	
Е	4.5	4.2	2	Е	3	5		$\overline{X}_{2}^{1} = (1.7, 3.7)$

Assign each case to the cluster having the closest mean. Recalculate the cluster means.

Step – 1.1 PLOTS



Assign each case to the cluster having the closest mean. Recalculate the cluster means.

Step – 2.1

Compute distances between each of the cluster means and all other points.

i	Xı	Х2	$\overline{\mathbf{v}}^{1}$ (1.0.5)	i	1	2
Α	1	1	\$\overline{X}_1^1 = (1,0.5)	А	0.5	2.7
В	1	0	_1	В	0.5	3.7
C	0	2	\overline{X}_{2}^{1} (1.7,3.7)	С	1.8	2.4
D	2	4		D	3.6	0.5
E	3	5		Е	4.9	1.9

Step – 2.1

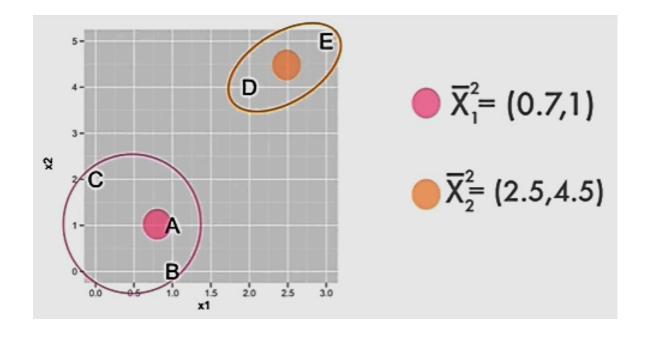
✤Therefore, the new clusters are: {A,B,C} and {D,E}

Assign each case to the cluster having the closest mean. Recalculate the cluster means.

i	1	2	Cluster	i	X 1	Х2		
Α	0.5	2.7	1	A	1	1	$\mathbf{\overline{X}}_{1}^{2}$	\overline{X}_{1}^{2} = (0.7,1)
В	0.5	3.7	1	В	1	0	$-\Lambda_1$	$- \chi_1^{-} (0.7,1)$
С	1.8	2.4	1	С	0	2	$\overline{\mathbf{v}}^2$	\overline{X}_{2}^{2} (2.5,4.5)
D	3.6	0.5	2	D	2	4	\overline{X}_{2}^{2}	$-\pi_2$ (2.0,4.0)
Е	4.9	1.9	2	E	3	5		

Step – 2.1 PLOTS

Assign each case to the cluster having the closest mean. Recalculate the cluster means.



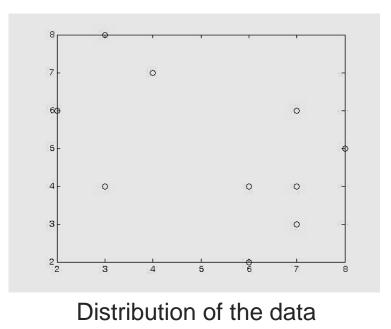
Step - 3

Algorithm has converged – recalculating distances, reassigning cases to clusters results in no change . This is the final solution .

Demonstration of PAM

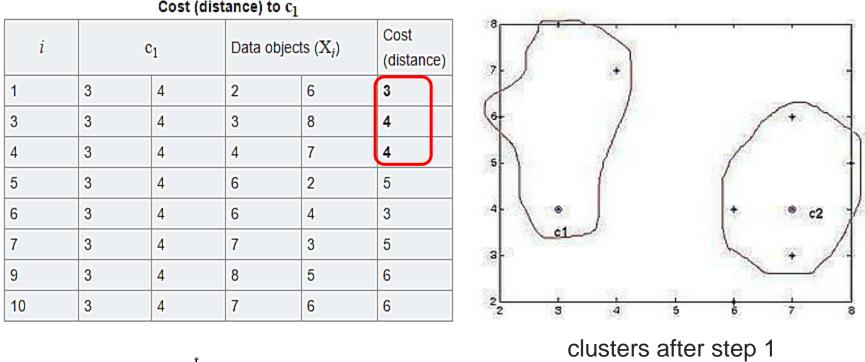
- Cluster the following data set of ten objects into two clusters i.e. k = 2.
- Consider a data set of ten objects as follows :

X ₁	2	6
X ₂ X ₃	3	4
X ₃	3	8
X ₄	4	7
X ₄ X ₅ X ₆ X ₇ X ₈ X ₉	6	2
X ₆	6	4
X ₇	7	3
X ₈	7	4
X ₉	8	5
X ₁₀	7	6



- 1. Initialize k centers.
- 2. Let us assume x_2 and x_8 are selected as **medoids**, so the centers are $c_1 = (3,4)$ and $c_2 = (7,4)$
- 3. Calculate distances to each center so as to associate each data object to its nearest medoid.
- Cost is calculated using Manhattan distance (metric with r = 1).
- Costs to the nearest medoid are shown bold in the table.

$$\mathrm{cost}(x,c) = \sum_{i=1}^d |x_i - c_i|$$



Cost (distance) to c1

$$\mathrm{cost}(x,c) = \sum_{i=1}^d |x_i - c_i|$$

ю.

Cost (distance) to c₂

i	c ₂		Data objects (\mathbf{X}_i)		Cost (distance)
1	7	4	2	6	7
3	7	4	3	8	8
4	7	4	4	7	6
5	7	4	6	2	3
6	7	4	6	4	1
7	7	4	7	3	1
9	7	4	8	5	2
10	7	4	7	6	2

Then the clusters become:

Cluster₁ = {(3,4)(2,6)(3,8)(4,7)} Cluster₂ = {(7,4)(6,2)(6,4)(7,3)(8,5)(7,6)}

Since the points (2,6) (3,8) and (4,7) are closer to c_1 hence they form one cluster whilst remaining points form another cluster.

So the total cost involved is 20.

Where cost between any two points is found using formula

$$\mathrm{cost}(x,c) = \sum_{i=1}^d |x_i - c_i|$$

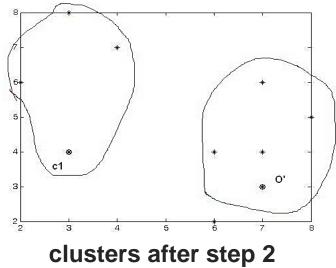
where x is any data object, c is the medoid, and d is the dimension of the object which in this case is 2.

Total cost is the summation of the cost of data object from its medoid in its cluster so here:

$$\begin{aligned} \text{total cost} &= \{ \text{cost}((3,4),(2,6)) + \text{cost}((3,4),(3,8)) + \text{cost}((3,4),(4,7)) \} \\ &+ \{ \text{cost}((7,4),(6,2)) + \text{cost}((7,4),(6,4)) + \text{cost}((7,4),(7,3)) \\ &+ \text{cost}((7,4),(8,5)) + \text{cost}((7,4),(7,6)) \} \\ &= (3+4+4) + (3+1+1+2+2) \\ &= 20 \end{aligned}$$

Select one of the nonmedoids O' Let us assume O' = (7,3), i.e. x_7 . So now the medoids are $c_1(3,4)$ and O' (7,3)

If c1 and O' are new medoids, calculate the total cost involved By using the formula in the step 1



Cost (distance) to c₁

i	c ₁		Data objects (\mathbf{X}_i)		Cost (distance)
1	3	4	2	6	3
3	3	4	3	8	4
4	3	4	4	7	4
5	3	4	6	2	5
6	3	4	6	4	3
8	3	4	7	4	4
9	3	4	8	5	6
10	3	4	7	6	6

Cost (distance) to c₂

i	Ο'		Data objects (\mathbf{X}_i)		Cost (distance)
1	7	3	2	6	8
3	7	3	3	8	9
4	7	3	4	7	7
5	7	3	6	2	2
6	7	3	6	4	2
8	7	3	7	4	1
9	7	3	8	5	3
10	7	3	7	6	3

total cost =
$$3 + 4 + 4 + 2 + 2 + 1 + 3 + 3$$

= 22

So cost of swapping medoid from c_2 to O' is

$$\begin{split} S &= \text{current total cost} - \text{past total cost} \\ &= 22 - 20 \\ &= 2 > 0. \end{split}$$

So moving to O' would be a **bad idea**, so the **previous choice was good**. So we try other nonmedoids and found that our first choice was the best. So the configuration does not change and algorithm terminates here (i.e. there is no change in the medoids).

