

Data Mining & Data Warehouse

Dr. Raed Ibraheem Hamed

University of Human Development, College of Science and Technology Department of Information Technology

2016 - 2017

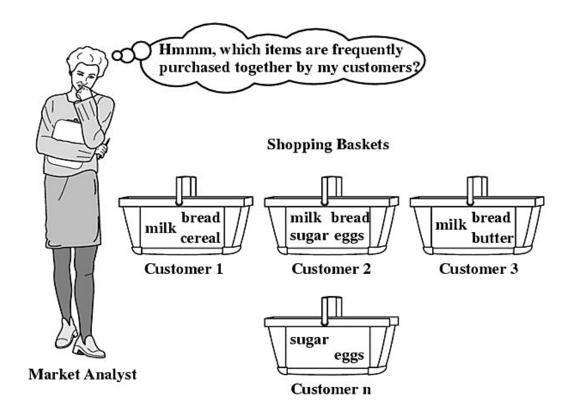
Road map

- Association rule mining
- Market-Basket Data
- Frequent Itemsets
- Association rule Applications
- Association Rules Definition
- Measure 1: Support
- Measure 2: Confidence
- > Transaction data: supermarket data
- Rule strength measures

Association rule mining

Proposed by Agrawal et al in 1993.

- It is an important data mining model studied extensively by the database and data mining community.
- Initially used for Market Basket Analysis to find how items purchased by customers are related.


Market-Basket Data

- A large set of items, e.g., things sold in a supermarket.
- A large set of baskets, each of which is a small set of the items, e.g., the things one customer buys on one day.

Market Basket Analysis

Typically, association rules are considered interesting if they satisfy both a minimum support threshold and a minimum confidence threshold.

Frequent Itemsets

 Given a set of transactions, find combinations of items (itemsets) that occur frequently

Market-Basket transactions

Support s(I): number of transactions that contain itemset I

Items: {Bread, Milk, Diaper, Beer, Eggs, Coke}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of frequent itemsets $s(I) \ge 3$

{Bread}: 4 {Milk} : 4 {Diaper} : 4 {Beer}: 3 {Diaper, Beer} : 3 {Milk, Bread} : 3

Association rule Applications

- Items = products; baskets = sets of products someone bought in one trip to the store.
- Example application: given that many people buy tea and sugar together:
 - Run a sale on sugar ; raise price of tea.
 - Only useful if many buy sugar & tea.

Association rules are if/then statements that help uncover relationships between seemingly unrelated data in a relational database or other information repository. An example of an association rule would be "If a customer buys a dozen eggs, he is 80% likely to also purchase milk."

There are two common ways to measure association.

Measure 1: Support.

Measure 1: Support. This says how popular an itemset is, as measured by the proportion of transactions in which an itemset appears. In Table 1 below, the support of {apple} is 4 out of 8, or 50%. Itemsets can also contain multiple items.

For instance, the support of {apple, beer, rice} is 2 out of 8, or 25%.

Support {
$$\bigcirc$$
 } = $\frac{4}{8}$

Measure 1: Support.

Transaction 1	🍎 🔰 😔 🍗
Transaction 2	🍎 🗎 😔
Transaction 3	()
Transaction 4	<i>i</i>
Transaction 5	🧷 🗎 🥯 🍗
Transaction 6	🍼 🗎 🥯
Transaction 7	I
Transaction 8	Ø 🏷

Table 1. Example Transactions

If you discover that sales of items beyond a certain proportion tend to have a significant impact on your profits, you might consider using that proportion as your support **threshold**.

You may then identify itemsets with support values above this threshold as significant itemsets.

Measure 2: Confidence.

Measure 2: Confidence. This says how likely item Y is purchased when item X is purchased, expressed as $\{X \rightarrow Y\}$.

This is measured by the proportion of transactions with item X, in which item Y also appears. In Table 1, the confidence of $\{apple \rightarrow beer\}$ is 3 out of 4, or 75%.

Confidence
$$\{\textcircled{O} \rightarrow \textcircled{N}\} = \frac{\text{Support} \{\textcircled{O}, \textcircled{N}\}}{\text{Support} \{\textcircled{O}\}}$$

 $3 / 8 = 0.375$ $4 / 8 = 0.5$
Confidence $= 0.375 / 0.5 = 0.75$

Support and Confidence Example

Transaction ID	Items Bought					
1	Shoes, Shirt, Jacket					
2	Shoes, Jacket					
3	Shoes, Jeans					
4	Shirt, Sweatshirt					

If the **support** is 50%, then {Shoes, Jacket} is the only 2- itemset that satisfies the support.

Frequent Itemset	Support				
{Shoes}	75%				
{Shirt}	50%				
{Jacket}	50%				
{Shoes, Jacket}	50%				

If the **confidence** is 50%, then the only two rules generated from this 2-itemset, that have confidence are:

Shoes \Rightarrow Jacket Support=50%, Confidence=66%

Jacket \Rightarrow Shoes Support=50%, Confidence=100%

Support and Confidence Example

• Given a database of transactions:

Transaction	Items					
t_1	Bread,Jelly,PeanutButter					
t_2	Bread,PeanutButter					
t_3	Bread, Milk, PeanutButter					
t_4	Beer,Bread					
t_5	Beer,Milk					
	·					

• Find all the association rules:

$X \Rightarrow Y$	8	α
$\fbox{Bread} \Rightarrow \texttt{PeanutButter}$	60%	75%
$\mathbf{PeanutButter} \Rightarrow \mathbf{Bread}$	60%	100%
$\mathbf{Beer} \Rightarrow \mathbf{Bread}$	20%	50%
${f PeanutButter} \Rightarrow {f Jelly}$	20%	$\mathbf{33.3\%}$
$\textbf{Jelly} \Rightarrow \textbf{PeanutButter}$	20%	100%
$\mathbf{Jelly} \Rightarrow \mathbf{Milk}$	0%	0%

The model: data

- *I* = {*i*₁, *i*₂, ..., *i_m*}: a set of *items*.
 Transaction *t*:
 - \Box *t* a set of items, and $t \subseteq I$.
- Transaction Database T: a set of transactions T = {t₁, t₂, ..., t_n}.

Transaction data: supermarket data

Market basket transactions:

- t1: {bread, cheese, milk}
- t2: {apple, eggs, salt, yogurt}

tn: {biscuit, eggs, milk}

Concepts:

. . .

□ An *item*: an item/article in a basket

- □ *I*: the set of all items sold in the store
- A *transaction*: items purchased in a basket; it may have TID (transaction ID)

□ A *transactional dataset*: A set of transactions

Transaction data: a set of documents

• A text document data set. Each document is treated as a "bag" of keywords

- doc1: Student, Teach, School
- doc2: Student, School
- doc3: Teach, School, City, Game
- doc4: Baseball, Basketball
- doc5: Basketball, Player, Spectator
- doc6: Baseball, Coach, Game, Team
- doc7: Basketball, Team, City, Game

The model: rules

- A transaction *t* contains *X*, a set of items (itemset) in *I*, if $X \subseteq t$.
- An association rule is an implication of the form: $X \rightarrow Y$, where $X, Y \subset I$, and $X \cap Y = \emptyset$
- An itemset is a set of items.
 E.g., X = {milk, bread, cereal} is an itemset.
 A *k*-itemset is an itemset with *k* items.
 E.g., {milk, bread, cereal} is a 3-itemset

Rule strength measures

- Support: The rule holds with support sup in T (the transaction data set) if sup% of transactions contain $X \cup Y$.
 - $\square sup = \Pr(X \cup Y).$
- Confidence: The rule holds in *T* with confidence *conf* if *conf*% of tranactions that contain *X* also contain *Y*.
 - $\Box \ conf = \Pr(Y \mid X)$
- An association rule is a pattern that states when X occurs, Y occurs with certain probability.

Support and Confidence

Support count: The support count of an itemset X, denoted by X.count, in a data set T is the number of transactions in T that contain X. Assume T has n transactions.

Then,

$$support = \frac{(X \cup Y).count}{n}$$

$$confidence = \frac{(X \cup Y).count}{X.count}$$

Goal and key features

 Goal: Find all rules that satisfy the user-specified minimum support (minsup) and minimum confidence (minconf).

Key Features

- * Completeness: find all rules.
- * No target item(s) on the right-hand-side
- * Mining with data on hard disk (not in memory)

An example

- Transaction data
- Assume:
 - minsup = 30%minconf = 80%

- t1: Beef, Chicken, Milk
- t2: Beef, Cheese
- t3: Cheese, Boots
- t4: Beef, Chicken, Cheese
- t5: Beef, Chicken, Clothes, Cheese, Milk
- t6: Chicken, Clothes, Milk
- t7: Chicken, Milk, Clothes
- An example frequent *itemset*:

{Chicken, Clothes, Milk} [sup = 3/7]

• Association rules from the itemset:

Clothes \rightarrow Milk, Chicken [sup = 3/7, conf = 3/3]

Clothes, Chicken \rightarrow Milk, [sup = 3/7, conf = 3/3]

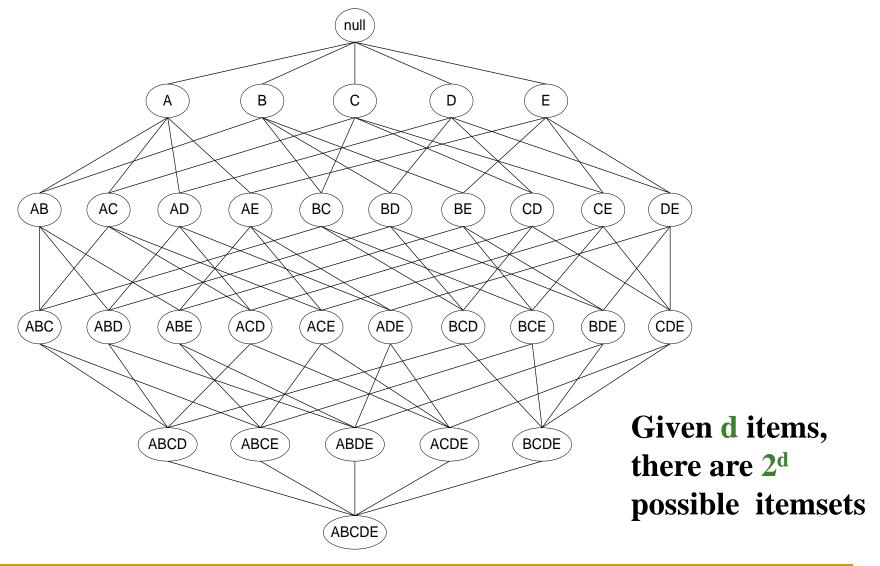
. . .

. . .

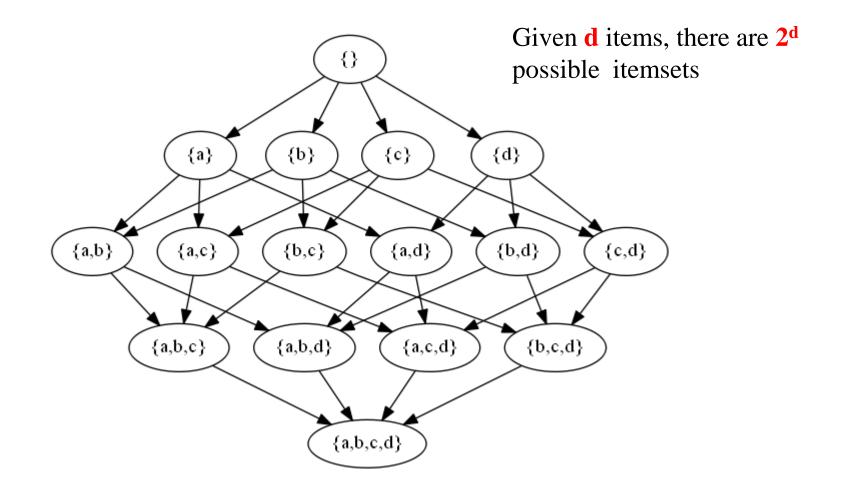
Transaction data representation

- A simplistic view of shopping baskets,
- Some important information not considered. E.g,
 - the quantity of each item purchased and
 - the price paid.

Many mining algorithms


• There are a large number of them!!

- They use different strategies and data structures.
- Their resulting sets of rules are all the same.
 - Given a transaction data set T, and a minimum support and a minimum confident, the set of association rules existing in T is uniquely determined.
- Any algorithm should find the same set of rules although their computational efficiencies and memory requirements may be different.
- We study only one: the Apriori Algorithm


Mining Frequent Itemsets task

- Input: A set of transactions T, over a set of items I
- Output: All possible itemsets
- Problem parameters:
 - \square N = |T|: number of transactions
 - d = ||: number of (distinct) items
 - w: max width of a transaction
 - Number of possible itemsets $M = 2^d$?

Frequent Itemset Generation Network

Frequent Itemset Generation Network

A Binary Data Matrix of a Transactions Database

TID	lt auso			3eer	Bread	Milk	Diaper	Eggs	Coke
TID	Items		T	-	1	1			
1	Bread, Milk		T_1	0	T	1	0	0	0
2	Bread, Diaper, Beer, Eggs		<i>T</i> ₂	1	1	0	1	1	0
3	Milk, Diaper, Beer, Coke		T_3	1	0	1	1	0	1
4	Bread, Milk, Diaper, Beer		T_4	1	1	1	1	0	0
5	Bread, Milk, Diaper, Coke		T_5	0	1	1	1	0	1

